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Abstract We present a variant of the Meissl scheme to re-
late surface spherical harmonic coefficients of the disturb-
ing potential of the Earth’s gravity field on the surface of
the geodetic ellipsoid to surface spherical harmonic coeffi-
cients of its first- and second-order normal derivatives on the
same or any other ellipsoid. It extends the original [spheri-
cal] Meissl scheme, which only holds for harmonic coef-
ficients computed from geodetic data on a sphere. In our
scheme, a vector of solid spherical harmonic coefficients of
one quantity is transformed into spherical harmonic coeffi-
cients of another quantity by pre-multiplication with a trans-
formation matrix. This matrix is diagonal for transforma-
tions between spheres, but block-diagonal for transforma-
tions involving the ellipsoid. The computation of the trans-
formation matrix involves an inversion if the original co-
efficients are defined on the ellipsoid. This inversion can
be performed accurately and efficiently (i.e., without reg-
ularisation) for transformation among different gravity field
quantities on the same ellipsoid, due to diagonal dominance
of the matrices. However, transformations from the ellipsoid
to another surface can only be performed accurately and ef-
ficiently for coefficients up to degree and order 520 due to
numerical instabilities in the inversion.
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1 Introduction

We provide some advance upon and further generalisation of
the original spherical Meissl scheme (Meissl 1971, Rummel
and Van Gelderen 1992, 1995, Grafarend 2001). Our main
motivation is that much of current physical geodetic theory
and practice is based on spherical approximations, whereas
the oblate ellipsoid of revolution better describes the true
figure of the Earth. As such, formulations that account for
the Earth’s ellipticity are preferable.

The relations among different gravity field quantities
(functionals), e.g., the geopotential and its derivatives, are
much simpler in the spectral domain than in the space do-
main (e.g., Heiskanen and Moritz 1967). These spectral rela-
tions can be combined in a ‘diagram’, often called the Meissl
scheme. The principles of the spectral relations among grav-
ity field functionals were formulated by Meissl (1971) and
later combined into a concise scheme by Rummel and Van
Gelderen (1992, 1995) and Grafarend (2001).

The main part of the spherical Meissl scheme relates sur-
face spherical harmonic coefficients (SHCs) of the Earth’s
external disturbing potential (T ) with coefficients of its first-
and second-order radial derivatives on spheres at different
altitudes. The spherical Meissl scheme has been extended
to include derivatives in latitudinal and longitudinal direc-
tions by using vector or tensor spherical harmonic expan-
sions, instead of the common scalar spherical harmonic ex-
pansion (Rummel and Van Gelderen 1995). The spherical
Meissl scheme was further extended to include vertical de-
flections and gravity disturbances (Grafarend 2001), and for-
ward gravity field modelling using Newtonian integration
(Kuhn and Featherstone 2003), while Keller (2002) discusses
the Meissl scheme in terms of pseudo-differential operators.

However, all of the above contributions only apply to
gravity field functionals given on a sphere. When the oblate
ellipticity of the Earth (e) is taken into account, a represen-
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tation of gravity quantities as a surface spherical harmonic
expansion is still possible (cf. Claessens 2006). While spec-
tral relations among them become more complicated, they
exist nevertheless.

A second limitation of the original [spherical] Meissl
scheme is that it only considers radial, longitudinal and lati-
tudinal derivatives of T . Derivatives of T with respect to the
ellipsoidal surface normal (h) are not included, even though
these derivatives feature in many boundary-value problems
(BVPs). A spectral relation between the disturbing poten-
tial and its first derivative with respect to h are provided in
Moritz (1980a, Ch. 39), and Sjöberg (2003), but these so-
lutions are limited to an accuracy of order O(

e2
)
, which is

insufficient for high-degree coefficients. As an extension of
the Meissl scheme to a non-spherical geometry, Bölling and
Grafarend (2005) derive relations between T and its deriva-
tives in the ellipsoidal domain. They use the framework of
ellipsoidal harmonics (e.g., Hobson 1931, Heiskanen and
Moritz 1967, pp. 41-45) to derive the ellipsoidal spectral
properties.

In this paper, the Meissl scheme is generalised to include
relations among T and its normal derivatives on the ellip-
soid (i.e., with respect to the ellipsoidal surface normal h),
in the framework of the conceptually simple and most com-
monly used scalar spherical harmonic expansion. A prac-
tical advantage of using scalar spherical harmonics, as op-
posed to tensor spherical harmonics and/or ellipsoidal har-
monics, is that the vast majority of global gravity models
are expressed in terms of scalar spherical harmonics. Syn-
thesis of functionals from spherical harmonic expansions is
straightforward and numerically stable up to very high de-
gree and order (e.g., Holmes and Featherstone 2002, Jekeli
et al. 2007, Wittwer et al. in press), whereas the numerical
computation of ellipsoidal harmonics is more problematic
(e.g., Sona 1995). Moreover, the use of the ellipsoidal coor-
dinate system in combination with the more common geode-
tic coordinate system is not required in the approach taken
here.

The scheme presented in this paper can be of use in
many applications, such as the solution of ellipsoidal BVPs
for gravity field modelling. A specific example is the con-
struction of a global gravity field model from terrestrial data
(cf., e.g., Cruz 1986; Petrovskaya et al. 2001; Claessens and
Featherstone 2005). Terrestrial gravity anomalies can be ex-
panded into a series of surface spherical harmonics on the
ellipsoid and transformed into a solid spherical harmonic
expansion, without the need for continuation to a bound-
ing sphere as is required in the methods of Cruz (1986) and
Petrovskaya et al. (2001). The second-order derivatives of
the disturbing potential are of interest in gravity gradiome-
try, and the second-order derivative with respect to h (i.e.,
the vertical gravity gradient) is, e.g., used in upward/down-

ward continuation of gravity measurements (e.g., Heiskanen
and Moritz 1967, p.114, Rózsa and Tóth 2005).

2 A contextual recapitulation of the spherical Meissl
scheme

Any function that is harmonic outside a sphere with radius
R, e.g., the Earth’s exterior disturbing potential T , can be
expanded into a series of solid spherical harmonics

T (r, θ, λ) =
∞∑

n=0

(
R

r

)n+1 n∑
m=−n

T
R

nmY nm(θ, λ) (1)

where Y nm are the fully-normalised spherical harmonic func-
tions and the coefficients T

R

nm can be computed from an in-
tegration over the sphere (e.g., Heiskanen and Moritz 1967,
Hobson 1931)

T
R

nm =
1
4π

∫

σ

T (R, θ, λ)Y nm(θ, λ)dσ (2)

where (r, θ, λ) are spherical polar coordinates and dσ is the
infinitesimal surface element on the unit sphere
(dσ = sin θdθdλ).

Equation (1) can be used to compute T and its radial
derivatives anywhere outside the sphere that completely en-
closes the masses of the Earth. Simple one-to-one relations
exist between these solid SHCs and surface SHCs of T or
its radial derivatives defined on the surface of a sphere sit-
uated completely within the harmonic region (Meissl 1971,
Rummel and Van Gelderen 1992, 1995, Grafarend 2001).

These one-to-one [spherical] relations are all of the form
(cf. Rummel and Van Gelderen 1995)

dj
rT

R2

nm = λRR2
n (T, dj

rT )T
R

nm, 0 ≤ j ≤ 2 (3)

where dj
rT

R2

nm are surface SHCs of the j-th radial deriva-
tive of T on the surface of a sphere with radius R2, and
λRR2

n (T, dj
rT ) are the functions that transform the solid SHCs

T
R

nm into the surface spherical harmonic coefficient dj
rT

R2

nm.
The transformation functions in Eq. (3) depend solely

upon the degree n of the coefficients and on the radii R and
R2. Inserting the inverse of Eq. (3) (replacing index j by i)
into Eq. (3) itself, gives a more general relation among the
functionals of T .

dj
rT

R2

nm = λR1R2
n (di

rT, dj
rT )di

rT
R1

nm, 0 ≤ i, j ≤ 2 (4)
where

λR1R2
n (di

rT, dj
rT ) =

λRR2
n (T, dj

rT )
λRR1

n (T, di
rT )

(5)

It can be derived via evaluation and differentiation of Eq.
(1) that

λRR1
n (T, T ) =

(
R

R1

)n+1

(6)

λRR1
n (T, drT ) = −n + 1

R

(
R

R1

)n+2

(7)
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λRR1
n (T, d2

rT ) =
(n + 1)(n + 2)

R2

(
R

R1

)n+3

(8)

Rummel and Van Gelderen (1995) propose a spherical
Meissl scheme that relates T to its first two radial deriva-
tives on a sphere with radius R (‘ground level’), and to T

and its first two radial derivatives on a sphere with radius
Rs (‘satellite height’). Using Eqs. (5-8) any transformation
function λR1R2

n (di
rT, dj

rT ) can be computed for 0 ≤ i, j ≤
2. An adaptation, in the context of this paper, of this spher-
ical Meissl scheme is shown in Fig. 1. The transformation
functions λR1R2

n (di
rT, dj

rT ) corresponding to the arrows in
Fig. 1 can be viewed as eigenvalues. They are provided in
Table 1, where the subscripts R1 and R2 are shown only
once when R1 = R2.

n n

n n n

nn

Fig. 1 The spherical Meissl scheme (adapted from Rummel and Van
Gelderen 1995)

λR
n (drT, T ) =

−R

n + 1
λRRs

n (T, T ) =

(
R

Rs

)n+1

λRs
n (drT, T ) =

−Rs

n + 1
λRRs

n (drT, drT ) =

(
R

Rs

)n+2

λR
n (d2

rT, drT ) =
−R

n + 2
λRRs

n (d2
rT, d2

rT ) =

(
R

Rs

)n+3

λRs
n (d2

rT, drT ) =
−Rs

n + 2

Table 1 The seven eigenvalues of the spherical Meissl scheme (Fig. 1)

The arrows in Fig. 1 point in the direction of decreased
power in the high frequencies, showing that the lower fre-
quencies become more dominant for higher altitudes and for
lower-order derivatives (a power-shift filtering process). For
instance, geoid heights have more power in the low frequen-
cies than gravity anomalies.

3 The Meissl scheme for the geodetic ellipsoid

The original [spherical] Meissl scheme can be generalised to
not only transform between spherical harmonic expansions
defined with respect to spheres, but more generally between

spherical harmonic expansions defined with respect to an
oblate ellipsoid of revolution (i.e., geodetic ellipsoids).

Furthermore, the first- and second-order radial deriva-
tives in the spherical Meissl scheme can be replaced by first-
and second-order derivatives with respect to the ellipsoidal
normal (h), which are often of more interest than the radial
derivatives. Such a generalisation results in a Meissl scheme
for the ellipsoid, albeit in terms of spherical harmonics (see
Fig. 2).

Fig. 2 The Meissl scheme for the geodetic ellipsoid

In the case that the quantities are not given on a sphere,
but on an ellipsoid, surface spherical harmonic expansions
can still be computed (e.g., Jekeli 1988). However, one-to-
one relations between the surface SHCs no longer exist. In-
stead, SHCs of one quantity can be expressed as a weighted
summation over SHCs of another quantity. The details of
these weighted summations are provided in Section 4.

Due to the rotational symmetry of the geodetic ellipsoid,
computation of a SHC of degree n and order m only re-
quires SHCs of the original quantity of the same order m.
The general transformation formula is (cf. Eq. 4)

dj
hT

R2

nm
=

∞∑

k=−∞
λR1R2

nmk (di
hT, dj

hT )di
hT

R1

n−2k,m
,

0 ≤ i, j ≤ 2 (9)
Compared to Eq. (4), the radial derivatives are replaced

by normal-to-the-ellipsoid derivatives (symbolised by the sub-
script h), and the radii R1 and R2 are replaced by R1 and
R2, which symbolise the ellipsoid of the original quantity
and the ellipsoid of the desired quantity, respectively. Fur-
thermore, a summation over SHCs of odd or even degrees n

is included.
Equation (9) can also be written in matrix form

dj
hT R2 = ΛR1R2(di

hT, dj
hT )di

hT R1 , 0 ≤ i, j ≤ 2 (10)
where di

hT R1 is a vector containing all SHCs of the original
quantity, dj

hT R2 is a vector containing all SHCs of the de-
sired quantity, and ΛR1R2(di

hT, dj
hT ) is the transformation

matrix, containing the transformation factors λR1R2
nmi (di

hT, dj
hT ).

The transformation matrix in Eq. (10) is block-diagonal if
the SHCs in the two vectors di

hT R1 and dj
hT R2 are ordered

first by order m and subsequently by even or odd degree n.
The one-to-one relations of the spherical Meissl scheme

are thus replaced by matrix transformations in the Meissl
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scheme for the geodetic ellipsoid (Fig. 2). Like the spher-
ical Meissl scheme, our Meissl scheme shows the case of
an ellipsoid at ‘ground level’, symbolised by the ellipsoidal
radius re, and the case of an ellipsoid at ‘satellite height’,
symbolised by the ellipsoidal radius rs (cf. Rummel and
Van Gelderen 1995). The two ellipsoids with radii re and
rs do not necessarily need to have the same eccentricity e

(or flattening f ), although from a numerical point of view,
the eccentricity of both should be small (see Section 5). It is,
however, assumed that both ellipsoids have the same origin
and rotation axis.

Finally, in the limiting case that both ellipsoids have an
eccentricity of zero, the Meissl scheme for the ellipsoid de-
generates to the spherical Meissl scheme. The transforma-
tion matrices will then all become diagonal matrices, with
the eigenvalues from Table 1 along the diagonal.

4 Computation of the transformation matrices Λ

The computation of the transformation matrices in the Meissl
scheme for the ellipsoid (Fig. 2) is not straightforward. How-
ever, derivation of only three transformation matrices is suf-
ficient to compute all others via simple matrix multiplica-
tions. This follows from the fact that the transformations can
be applied successively, which results in a relation among
the transformation matrices
ΛR1R2(dj

hT, di
hT ) = ΛR1R3(dk

hT, di
hT )

×ΛR3R2(dj
hT, dk

hT ), 0 ≤ i, j, k ≤ 2 (11)
It is thus possible to compute a transformation matrix for
transformations between two ellipsoids with different ec-
centricities by consecutive transformations to and from a
sphere.

Because a reverse transformation can be found by inver-
sion of the transformation matrix, it also holds that
ΛR1R2(dj

hT, di
hT ) =

[
ΛR2R1(di

hT, dj
hT )

]−1 (12)
but it should be noted that the inversion can only be applied
if the transformation matrix is square and numerically well-
conditioned. The matrix will always be square if the max-
imum degree and order of the desired set of harmonics is
chosen equal to the maximum degree and order of the orig-
inal set. The question of whether the matrix is well- or ill-
conditioned is answered in Section 5.

Instead of deriving any of the seven relations in the Meissl
scheme (Fig. 2), three auxiliary transformations can be de-
rived, namely the relations between solid SHCs of T and
surface SHCs of T and its first- and second-order derivatives
with respect to h. In other words, the matrices ΛRre(T, T ),
ΛRre(T, dhT ) and ΛRre(T, d2

hT ) are derived, and all matri-
ces in the Meissl scheme for the geodetic ellipsoid can be
derived from these matrices using Eqs. (11) and (12).

As an example, the transformation matrix Λre(d2
hT, dhT )

that computes first-order derivatives from second-order deriva-
tives on the ellipsoid follows from
Λre(d2

hT, dhT ) =
[
ΛRre(T, d2

hT )
]−1

ΛRre(T, dhT ) (13)
The three matrices ΛRre(T, T ), ΛRre(T, dhT ) and ΛRre(T, d2

hT )
form a connection between the spherical Meissl scheme and
the Meissl scheme for the ellipsoid (Fig. 3). The connections
at ‘ground level’ also hold at ‘satellite height’.

Fig. 3 Connections among the spherical and ellipsoidal Meissl
schemes (black dashed lines), given by Eqs. (20), (43) and (44)

The task of finding the transformation matrix ΛRre(T, T )
comes down to finding a general transformation between
solid and surface SHCs. Assuming that T is harmonic ev-
erywhere outside the surface of the ellipsoid, the solid and
surface spherical harmonic expansions can be equated

T (re, θ, λ) =
∞∑

n=0

n∑
m=−n

(
R

re(θ)

)n+1

T
R

nmY nm(θ, λ)

=
∞∑

n=0

n∑
m=−n

T
re

nmY nm(θ, λ) (14)

The presence of the ellipsoidal radius re on the left-hand
side of Eq. (14) destroys the orthogonality of the spherical
harmonic basis functions, and a one-to-one relation between
the coefficients of each pair of degree n and order m there-
fore does not exist. A relation between both coefficients in-
dependent of longitude λ and geocentric co-latitude θ can
nevertheless be found when the dependence on θ is moved
inside the spherical harmonic functions Y nm.

This is achieved when the term (R/re)n+1 is expanded
into a binomial series

T (re, θ, λ) =
∞∑

n=0

n∑
m=−n

∞∑

j=0

αnj sin2j θT
R

nmY nm (15)

where

αnj =
(

c√
1− e2

)n+1

(−1)j

(n+1
2

j

)
e2j (16)

In Eq. (16), c = a/R, i.e., the ratio between the semi-major
axis a of the ellipsoid and the reference sphere radius R,
and e2 is the square of the first numerical eccentricity of the
oblate ellipsoid. Since for any ellipsoid 0 ≤ e2 sin2 θ < 1,
the binomial series will always be alternating and conver-
gent.
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Equation (15) contains the product of an even power of
the sine of the geocentric co-latitude θ and the spherical har-
monic functions, which can be equated to a weighted sum-
mation over spherical harmonic functions of the same order
m (Claessens 2005)

sin2j θY nm =
j∑

i=−j

K
2i,2j

nm Y n+2i,m (17)

Spherical harmonic functions of negative degree should be
set equal to zero in the evaluation of Eq. (17) and other
equations hereafter. The weights K

2i,2j

nm depend only on the
spherical harmonic degree n, order m and the summation
indices i and j. These weights can be computed efficiently
through an iterative scheme (Claessens 2005)

K
2i,2j

nm =
1∑

k=−1

K
2k,2

nm K
2(i−k),2(j−1)

n+2k,m (18)

based on the initial values

K
−2,2

nm = −
√

[(n− 1)2 −m2](n2 −m2)
(2n− 3)(2n− 1)2(2n + 1)

K
0,2

nm =
2(n2 + m2 + n− 1)
(2n− 1)(2n + 3)

K
2,2

nm = −
√

[(n + 1)2 −m2][(n + 2)2 −m2]
(2n + 1)(2n + 3)2(2n + 5)

(19)

Inserting Eq. (17) into Eq. (15) and reorganising the or-
der of summations allows for the one-to-one comparison of
the SHCs, ultimately leading to the final transformation for-
mula, which includes an infinite summation

T
re

nm =
∞∑

i=−∞
λRre

nmi(T, T )T
R

n−2i,m (20)

SHCs of negative degree should be set equal to zero in the
evaluation of Eq. (20) and other equations hereafter. The
weights in Eq. (20) also follow from an infinite summation

λRre
nmi(T, T ) =

∞∑

j=|i|
αn−2i,jK

2i,2j

n−2i,m (21)

Both infinite summations can, in practice, be confined
to a finite range because the series converge rapidly for el-
lipsoids with a small eccentricity, like the geodetic ellipsoid
(e2 = 0.00669438002290; Moritz 1980b). For SHCs up to
degree and order 360, it is sufficient to run the summation
in Eq. (20) from i = −20 to i = 20, and the summation in
Eq. (21) up to j = 20, in which case the relative truncation
error will be < 10−8. This requires less than 1 minute of
CPU time on a Sun UltraSPARC III Cu 1.2GHz processor
with 8GB of RAM.

However, for higher degrees and orders, the range of
summation needs to be extended. Roughly, the maximum
values of |i| and j need to be increased by one for every in-
crease in spherical harmonic degree n of ∼ 50 to obtain a
similar relative truncation error. Thus, for SHCs up to de-
gree and order 2160, the summation in Eq. (20) should be
performed from i = −56 to i = 56, and the summation in

Eq. (21) up to j = 56 to obtain a relative truncation error
< 10−8.

Equation (20) is a special case of Eq. (9) and can also
be written in matrix form. The weights λRre

nmi(T, T ) then
form the elements of the matrix ΛRre(T, T ). Derivation of
the matrices ΛRre(T, dhT ) and ΛRre(T, d2

hT ), which define
the transformation between solid SHCs and surface SHCs
of the first- and second-order normal derivative on an ellip-
soid, can be achieved along similar lines as the derivation of
ΛRre(T, T ). However, the complexity of the transformation
formulas increases significantly for the higher derivatives, as
follows.

The first- and second-order derivatives of T with respect
to h can be expressed in terms of the radial and latitudinal
derivatives. For points on the surface of the ellipsoid, it de-
generates to (Jekeli 1981)
∂T

∂h
= cos φ

∂T

∂r
− sin φ

∂T

re∂θ
(22)

and (Claessens 2006)
∂2T

∂h2
= cos2 φ

∂2T

∂r2
+ sin2 φ

(
∂T

re∂r
+

∂2T

r2
e∂θ2

)

+sin 2φ

(
∂T

r2
e∂θ

− ∂2T

re∂r∂θ

)
(23)

where φ is the difference between the geocentric co-latitude
θ and the geodetic co-latitude ϑ (φ = θ − ϑ). The sine and
cosine of φ can be written as a function of the geocentric
co-latitude as (Claessens 2006, p. 20)

sin φ =
e2 sin θ cos θ√

1− e2(2− e2) sin2 θ
(24)

cosφ =
1− e2 sin2 θ√

1− e2(2− e2) sin2 θ
(25)

The solid spherical harmonic expansion of T (Eq. 1) is
inserted into Eqs. (22) and (23) to yield (Claessens 2006)
∂T

∂h
= − 1

R

∞∑
n=0

(
R

re

)n+2 n∑
m=−n

T
R

nm

[
(n + 1) cos φ

+sin φ
∂

∂θ

]
Y nm (26)

and
∂2T

∂h2
=

1
R2

∞∑
n=0

(
R

re

)n+3 n∑
m=−n

T
R

nm

{
(n + 1)

×[n + 2− (n + 3) sin2 φ] + (n + 2) sin 2φ
∂

∂θ

+sin2 φ
∂2

∂θ2

}
Y nm (27)

The co-latitudinal derivatives of the spherical harmonic func-
tions in Eqs. (26) and (27) can be removed using two more
relations among spherical harmonics, as follows.

The first latitudinal derivative of the spherical harmonic
functions can be rewritten as (e.g., Moritz 1980a; Sjöberg
2003; Claessens 2005)

sin θ cos θ
∂Y nm

∂θ
= Nn,m,−2Y n−2,m + Nn,m,0Y nm
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+Nn,m,2Y n+2,m (28)
where
Nn,m,−2 = (n + 1)K

−2,2

nm

Nn,m,0 =
3
2
K

0,2

nm − 1

Nn,m,2 = −nK
2,2

nm

(29)

The second co-latitudinal derivative of the spherical har-
monic functions follows from the characteristic differential
equation (e.g., Hobson 1931)

sin2 θ
∂2Y nm

∂θ2
= − sin θ cos θ

∂Y nm

∂θ
− [n(n + 1) sin2 θ

−m2]Y nm(30)
which after insertion of Eqs. (18) and (28) reads

sin2 θ
∂2Y nm

∂θ2
= Rn,m,−2Y n−2,m + Rn,m,0Y nm

+Rn,m,2Y n+2,m (31)
where
Rn,m,−2 = −(n + 1)2K

−2,2

nm

Rn,m,0 = −(n2 + n +
3
2
)K

0,2

nm + m2 + 1

Rn,m,2 = −n2K
2,2

nm

(32)

Inserting Eqs. (28) and (31) into Eqs. (26) and (27) yields
the first- and second-order normal derivatives of T with re-
spect to h as a function of solid SHCs and spherical har-
monic basis functions
∂T

∂h
= − 1

R

∞∑
n=0

(
R

re

)n+2 n∑
m=−n

T
R

nm

[
(n + 1) cos φ

×Y nm +
sin φ

sin θ cos θ

1∑
p=−1

Nnm,2pY n+2p,m

]
(33)

and
∂2T

∂h2
=

1
R2

∞∑
n=0

(
R

re

)n+3 n∑
m=−n

T
R

nm

{
(n + 1)[n + 2

−(n + 3) sin2 φ]Y nm + (n + 2)
sin 2φ

sin θ cos θ

1∑
p=−1

Nnm,2pY n+2p,m +
sin2 φ

sin2 θ

1∑
p=−1

Rnm,2pY n+2p,m

}
(34)

All terms that include the [small] angle φ can be ex-
panded into binomial series. The sum of two series can be
combined via component-wise addition and the product of
two binomial series can be expressed as one binomial se-
ries using a Cauchy multiplication (e.g., Protter and Morrey
1964).

From Eqs. (24) and (25), it follows that

cos φ =
∞∑

k=0

(−1)ke2k

[ k∑

l=k−1

(2− e2)l

(− 1
2

l

)]
sin2k θ

sin φ

sin θ cos θ
= e2

∞∑

k=0

(−1)ke2k(2− e2)k

(− 1
2

k

)
sin2k θ

sin2 φ = e4
∞∑

k=0

(−1)k+1

[ k−1∑

l=k−2

e2l(2− e2)l

(−1
l

)]

× sin2k θ (35)

sin 2φ

sin θ cos θ
= 2e2

∞∑

k=0

(−1)ke2k

[ k∑

l=k−1

(2− e2)l

(−1
l

)]

× sin2k θ

sin2 φ

sin2 θ
= e4

∞∑

k=0

(−1)k

[ k∑

l=k−1

e2l(2− e2)l

(−1
l

)]
sin2k θ

The five series in Eq. (35) can all be combined with the
binomial series of the terms (R/re)n+2 or (R/re)n+3 using
Cauchy multiplication, and the combined series can then be
inserted into Eqs. (33) and (34). Subsequently, Eq. (17) can
be used to shift all dependence on θ into Y nm, introducing
an additional summation over index i.

After rearrangement of the summations over i and p,
Eqs. (33) and (34) become

∂T

∂h
= − 1

R

∞∑
n=0

n∑
m=−n

T
R

nm

∞∑

j=0

j+1∑

i=−j−1

[(n + 1)βnmij

+γnmij ]Y n+2i,m (36)
and
∂2T

∂h2
=

1
R2

∞∑
n=0

n∑
m=−n

T
R

nm

∞∑

j=0

j+1∑

i=−j−1

[(n + 1)(n + 2)δ0i

−(n + 1)(n + 3)κnmij + (n + 2)ζnmij + ηnmij ]Y n+2i,m

(37)
where δ0i is the Kronecker delta and

βnmij = K
2i,2j

nm

j∑

k=0

αn+1,j−k(−1)ke2k

×
k∑

l=k−1

(2− e2)l

(− 1
2

l

)
(38)

γnmij = e2

[ i+1∑

p=i−1

K
2p,2j

n+2(i−p),mNnm,2(i−p)

]

×
j∑

k=0

αn+1,j−k(−1)ke2k(2− e2)k

(− 1
2

k

)
(39)

κnmij = e4K
2i,2j

nm

j∑

k=0

αn+2,j−k(−1)k+1

×
k−1∑

l=k−2

e2l(2− e2)l

(−1
l

)
(40)

ζnmij = 2e2

[ i+1∑

p=i−1

K
2p,2j

n+2(i−p),mNnm,2(i−p)

]

×
j∑

k=0

αn+2,j−k(−1)ke2k
k∑

l=k−1

(2− e2)l

(−1
l

)
(41)

ηnmij = e4

[ i+1∑

p=i−1

K
2p,2j

n+2(i−p),mRnm,2(i−p)

]
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×
j∑

k=0

αn+2,j−k(−1)k
k∑

l=k−1

e2l(2− e2)l

(−1
l

)
(42)

In the numerical evaluation of Eq. (38), K
2p,2j

n+2(i−p),m should
be set to zero when |p| > j.

The summation order over n and i in Eqs. (36) and (37)
can be rearranged to yield expressions where the spherical
harmonic functions depend solely on degree n and order m.
Subsequently, the summations over indices i and j can be
reorganised so that the summation over i is brought outside
the summation over j. Then, a comparison between the solid
SHCs and surface SHCs of the first- and second-order nor-
mal derivative can be achieved.

The final transformation formulas read

dhT
re

nm =
∞∑

i=−∞
λRre

nmi(dhT, T )T
R

n−2i,m (43)

and

d2
hT

re

nm
=

∞∑

i=−∞
λRre

nmi(d
2
hT, T )T

R

n−2i,m (44)

where the weights λRre
nmi(dhT, T ) and λRre

nmi(d
2
hT, T ) are given

by

λRre
nmi(dhT, T ) = − 1

R

∞∑

j=|i|−1

[(n− 2i + 1)βn−2i,mij

+γn−2i,mij ] (45)
and

λRre
nmi(d

2
hT, T ) =

1
R2

∞∑

j=|i|−1

[
(n + 1)(n + 2)δ0i

−(n− 2i + 1)(n− 2i + 3)κn−2i,mij

+(n− 2i + 2)ζn−2i,mij + ηn−2i,mij

]
(46)

Thus, the weights given by Eqs. (21), (45) and (46) only
depend upon the degree n, order m, index i, reference sphere
radius R and the semi-major axis a and eccentricity e of the
ellipsoid. These weights populate the transformation matri-
ces ΛRre(T, T ), ΛRre(T, dhT ) and ΛRre(T, d2

hT ) that con-
nect the spherical Meissl scheme and the Meissl scheme for
the ellipsoid (the dashed lines in Fig. 3). Using these trans-
formation matrices in combination with Eqs. (8) and (9), any
transformation within the ellipsoidal Meissl scheme (Fig. 2)
can be performed.

5 Forward and reverse transformations

Equations (20), (43) and (44) can be used to compute sur-
face SHCs defined with respect to an ellipsoid from a set of
solid SHCs. These transformations can be performed with
high accuracy to at least degree and order 2160, which is
consistent with the expected degree and order of the EGM07
global geopotential model (Pavlis et al., 2007).

However, the reverse transformation requires the inver-
sion of the transformation matrix. This inversion is only pos-
sible if the matrix is square and numerically well-conditioned.

The matrix will always be square if the maximum degree
and order of the two sets of coefficients are chosen to be
equal.

The question whether the matrix will be numerically well-
conditioned can only be answered affirmatively up to a cer-
tain degree and order, as follows. The small eccentricity e of
the geodetic ellipsoid will result in a transformation matrix
that is strictly diagonally dominant (i.e., the absolute value
of each diagonal element is larger then the sum of all abso-
lute values of other elements in that row) for a large range of
degrees and orders. In this case, the matrix is always well-
conditioned.

An additional advantage of the diagonal dominance of
the transformation matrix is that inversion can be achieved
efficiently by an iterative approach, such as Jacobi or Gauss-
Seidel iteration (e.g., Strang 1986). These iteration schemes
will always converge if the criterion of diagonal dominance
is met, and the convergence becomes more rapid as the di-
agonal dominance gets stronger. However, once the diago-
nal dominance is lost, the transformation matrix becomes
ill-conditioned and the inversion becomes inaccurate.

Figure 4 shows a measure of the diagonal dominance of
the transformation matrix ΛRre(T, T ) for an ellipsoid with
the eccentricity of the Earth and for coefficients up to n =
720. Beyond degree n = 520, some rows in the transforma-
tion matrix are no longer diagonally dominant, especially
for low m. The transformation matrices for the higher-order
derivatives, ΛRre(dhT, T ) and ΛRre(d2

hT, T ), show a very
similar pattern.

Since all transformations in the Meissl scheme for the
ellipsoid (Fig. 2) are derived from a subsequent application
of a reverse and a forward transformation, all will suffer
from the loss of diagonal dominance beyond degree 520.
However, in the case of transformations among T and its
derivatives at the surface of the same ellipsoid, visualised by
the horizontal arrows in the Meissl scheme for the ellipsoid
(Fig. 2), these numerical problems can be avoided.

As an example, consider the relation between the surface
SHCs of T and the surface SHCs of its normal derivative
∂T/∂h. The normal derivative of T can be written in terms
of the surface SHCs T

re

nm as
∂T

∂h
= − 1

re

∞∑
n=0

n∑
m=−n

T
re

nm

(
(n + 1) cos φY nm

+sin φ
∂Y nm

∂θ

)
(47)

The only difference between Eqs. (33) and (47), besides the
change from solid to surface SHCs, is that the term (R/re)
is not raised to the power (n + 2). A relation between the
surface SHCs of T and those of its normal derivative can
therefore be derived along exactly the same lines as laid out
in Section 4.
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In this case, the binomial coefficients are no longer de-
pendent on the degree n, which means that the weights of
λnmi of i 6= 0 (the off-diagonal weights) do not signifi-
cantly increase for higher degrees n. The matrix containing
the weights is therefore strongly diagonally dominant, even
when SHCs of very high degree and order are taken into ac-
count (Fig. 5). This not only makes the forward transforma-
tion more efficient, but also ensures that iterative procedures
for the reverse transformation will always converge.

The rate of convergence of these iterative methods will
be high, due to the strong diagonal dominance displayed in
Fig. 5, with every element on the diagonal being at least two
orders of magnitude larger than the sum of all other elements
in the same row.

The spectral relation between the surface SHCs of T

and its second normal derivative can be obtained along the
same principles, and all horizontal transformations in the
Meissl scheme for the ellipsoid (Fig. 2) can thus be per-
formed very efficiently in both directions. Transformations
from the sphere to the ellipsoid are less efficient, due to the
increase in the off-diagonal terms for higher degrees n, but
only contain a forward transformation and do therefore not
contain the problems encountered in the reverse transforma-
tions.

Only a transformation from an ellipsoidal surface to an-
other surface (either a sphere or another ellipsoid) requires
the inversion of a non-diagonally dominant matrix, which
can only be performed efficiently up to degree and order 520
for an ellipsoid with the eccentricity of the Earth.

6 Conclusion

The Meissl scheme for the geodetic ellipsoid provides the
spectral relations among the disturbing potential T and its
first- and second-order normal derivatives with respect to h

on any ellipsoid, also allowing transformations from one el-
lipsoid to another. The transformations are expressed as a
multiplication of a block-diagonal matrix with a vector con-
taining surface SHCs of one quantity, yielding a vector con-
taining surface SHCs of a second quantity.

Numerical instabilities may occur in the transformation
from the ellipsoid to another surface for spherical harmonic
expansions beyond degree 520, because this requires inver-
sion of an ill-posed, non-diagonally dominant matrix. All
other transformations in the scheme are highly accurate and
efficient up to at least degree and order 2160, which is the
same as the forthcoming EGM07 global geopotential model.

Ultimately, a fully ellipsoidal Meissl scheme using ellip-
soidal harmonics may overcome the numerical difficulties in
the very high degrees faced in the present formulation using
surface spherical harmonics on the geodetic ellipsoid, but
this still requires further development and implementation.

However, this must be countered with the numerical insta-
bilities in ellipsoidal harmonics for high degrees (cf. Sona
1995).
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