308 research outputs found

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles

    K+ Channel Regulator KCR1 Suppresses Heart Rhythm by Modulating the Pacemaker Current If

    Get PDF
    Hyperpolarization-activated, cyclic nucleotide sensitive (HCN) channels underlie the pacemaker current If, which plays an essential role in spontaneous cardiac activity. HCN channel subunits (HCN1-4) are believed to be modulated by additional regulatory proteins, which still have to be identified. Using biochemistry, molecularbiology and electrophysiology methods we demonstrate a protein-protein interaction between HCN2 and the K+ channel regulator protein 1, named KCR1. In coimmunoprecipitation experiments we show that KCR1 and HCN2 proteins are able to associate. Heterologously expressed HCN2 whole-cell current density was significantly decreased by KCR1. KCR1 profoundly suppressed IHCN2 single-channel activity, indicating a functional interaction between KCR1 and the HCN2 channel subunit. Endogenous KCR1 expression could be detected in adult and neonatal rat ventriculocytes. Adenoviral-mediated overexpression of KCR1 in rat cardiomyocytes (i) reduced If whole-cell currents, (ii) suppressed most single-channel gating parameters, (iii) altered the activation kinetics, (iv) suppressed spontaneous action potential activity, and (v) the beating rate. More importantly, siRNA-based knock-down of endogenous KCR1 increased the native If current size and single-channel activity and accelerated spontaneous beating rate, supporting an inhibitory action of endogenous KCR1 on native If. Our observations demonstrate for the first time that KCR1 modulates IHCN2/If channel gating and indicate that KCR1 serves as a regulator of cardiac automaticity

    Expression of inhibitor of apoptosis protein Livin in renal cell carcinoma and non-tumorous adult kidney

    Get PDF
    The antiapoptotic Livin/ML-IAP gene has recently gained much attention as a potential new target for cancer therapy. Reports indicating that livin is expressed almost exclusively in tumours, but not in the corresponding normal tissue, suggested that the targeted inhibition of livin may present a novel tumour-specific therapeutic strategy. Here, we compared the expression of livin in renal cell carcinoma and in non-tumorous adult kidney tissue by quantitative real-time reverse transcription-PCR, immunoblotting, and immunohistochemistry. We found that livin expression was significantly increased in tumours (P=0.0077), but was also clearly detectable in non-tumorous adult kidney. Transcripts encoding Livin isoforms α and β were found in both renal cell carcinoma and normal tissue, without obvious qualitative differences. Livin protein in renal cell carcinoma samples exhibited cytoplasmic and/or nuclear staining. In non-tumorous kidney tissue, Livin protein expression was only detectable in specific cell types and restricted to the cytoplasm. Thus, whereas the relative overexpression of livin in renal cell carcinoma indicates that it may still represent a therapeutic target to increase the apoptotic sensitivity of kidney cancer cells, this strategy is likely to be not tumour-specific

    Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements

    Get PDF
    In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square substrates by a dense glass coating (interlayer). The role played by different formulations of starting glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to evaluate the bonding strength between the sample's components. In vitro bioactive behaviour was assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and inside the pores of the trabecular coating. The concepts disclosed in the present study can have a significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, often invasive bone-prosthesis fixatio

    EZH2 Depletion Blocks the Proliferation of Colon Cancer Cells

    Get PDF
    The Enhancer of Zeste 2 (EZH2) protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi)-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer

    Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promyelocytic leukemia (PML) protein participates in a number of cellular processes, including transcription regulation, apoptosis, differentiation, virus defense and genome maintenance. This protein is structurally organized into a tripartite motif (TRIM) at its N-terminus, a nuclear localization signal (NLS) at its central region and a C-terminus that varies between alternatively spliced isoforms. Most PML splice variants target the nucleus where they define sub-nuclear compartments termed PML nuclear bodies (PML NBs). However, PML variants that lack the NLS are also expressed, suggesting the existence of PML isoforms with cytoplasmic functions. In the present study we expressed PML isoforms with a mutated NLS in U2OS cells to identify potential cytoplasmic compartments targeted by this protein.</p> <p>Results</p> <p>Expression of NLS mutated PML isoforms in U2OS cells revealed that PML I targets early endosomes, PML II targets the inner nuclear membrane (partially due to an extra NLS at its C-terminus), and PML III, IV and V target late endosomes/lysosomes. Clustering of PML at all of these subcellular locations depended on a functional TRIM domain.</p> <p>Conclusions</p> <p>This study demonstrates the capacity of PML to form macromolecular protein assemblies at several different subcellular sites. Further, it emphasizes a role of the variable C-terminus in subcellular target selection and a general role of the N-terminal TRIM domain in promoting protein clustering.</p

    Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2

    Get PDF
    Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean

    Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    Get PDF
    The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /− 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heating–cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds
    corecore