7,950 research outputs found

    Individual level covariate adjusted conditional autoregressive (indiCAR) model for disease mapping

    Get PDF
    © 2016 The Author(s). Background: Mapping disease rates over a region provides a visual illustration of underlying geographical variation of the disease and can be useful to generate new hypotheses on the disease aetiology. However, methods to fit the popular and widely used conditional autoregressive (CAR) models for disease mapping are not feasible in many applications due to memory constraints, particularly when the sample size is large. We propose a new algorithm to fit a CAR model that can accommodate both individual and group level covariates while adjusting for spatial correlation in the disease rates, termed indiCAR. Our method scales well and works in very large datasets where other methods fail. Results: We evaluate the performance of the indiCAR method through simulation studies. Our simulation results indicate that the indiCAR provides reliable estimates of all the regression and random effect parameters. We also apply indiCAR to the analysis of data on neutropenia admissions in New South Wales (NSW), Australia. Our analyses reveal that lower rates of neutropenia admissions are significantly associated with individual level predictors including higher age, male gender, residence in an outer regional area and a group level predictor of social disadvantage, the socio-economic index for areas. A large value for the spatial dependence parameter is estimated after adjusting for individual and area level covariates. This suggests the presence of important variation in the management of cancer patients across NSW. Conclusions: Incorporating individual covariate data in disease mapping studies improves the estimation of fixed and random effect parameters by utilizing information from multiple sources. Health registries routinely collect individual and area level information and thus could benefit by using indiCAR for mapping disease rates. Moreover, the natural applicability of indiCAR in a distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. CI NSW Study Reference Number: 2012/07/410. Dated: July 2012

    Exploring occupational standing activities using accelerometer-based activity monitoring

    Get PDF
    Prolonged standing at work is required by an estimated 60% of the employed population and is associated with a high prevalence of musculoskeletal disorders. ‘Standing’ is expected to encompass a range of activities of varying intensity. This study aimed to define a range of ‘standing’ work-based activities; and objectively explore differences between ‘standing’ occupations. The following movements were defined using a triaxial accelerometer (ActivPAL) through recordings of known movements (n = 11): static standing, weight-shifting, shuffling, walking and sitting. Movements over a working day were defined for chefs (n = 10), veterinary surgeons (n = 7) and office workers (n = 9). Despite veterinary surgeons and chefs spending a similar time in an upright posture, veterinary surgeons spent 62% of this time standing statically whereas chefs split their time between all the movements. Overall, this study provides the first attempt to define ‘standing’ activities, allowing the differentiation of activities between occupations spending similar periods of time upright. Practitioner Summary: This study identified a range of work-based ‘standing’ activities of varying intensity. Differences in activity were recorded between two occupations spending a similar time in an upright posture (veterinary surgeons and chefs). A broader definition of standing activities could be important when considering factors related to musculoskeletal disorders at work

    Antihelmintic treatment alters the parasite community in a wild mouse host

    Get PDF
    Individuals are often co-infected with several parasite species, yet the consequences of drug treatment on the dynamics of parasite communities in wild populations have rarely been measured. Here, we experimentally reduced nematode infection in a wild mouse population and measured the effects on other non-target parasites. A single oral dose of the anthelmintic, ivermectin, significantly reduced nematode infection, but resulted in a reciprocal increase in other gastrointestinal parasites, specifically coccidial protozoans and cestodes. These results highlight the possibility that drug therapy may have unintended consequences for non-target parasites and that host–parasite dynamics cannot always be fully understood in the framework of single host–parasite interactions

    Compressibility of titanosilicate melts

    Get PDF
    The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility

    Walk on the wild side: estimating the global magnitude of visits to protected areas.

    Get PDF
    How often do people visit the world's protected areas (PAs)? Despite PAs covering one-eighth of the land and being a major focus of nature-based recreation and tourism, we don't know. To address this, we compiled a globally-representative database of visits to PAs and built region-specific models predicting visit rates from PA size, local population size, remoteness, natural attractiveness, and national income. Applying these models to all but the very smallest of the world's terrestrial PAs suggests that together they receive roughly 8 billion (8 x 109) visits/y-of which more than 80% are in Europe and North America. Linking our region-specific visit estimates to valuation studies indicates that these visits generate approximately US 600billion/yindirectin−countryexpenditureandUS600 billion/y in direct in-country expenditure and US 250 billion/y in consumer surplus. These figures dwarf current, typically inadequate spending on conserving PAs. Thus, even without considering the many other ecosystem services that PAs provide to people, our findings underscore calls for greatly increased investment in their conservation.This study was supported by The Natural Capital Project (http://www.naturalcapitalproject.org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final published version. It first appeared at http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002074

    Many-particle entanglement with Bose--Einstein condensates

    Get PDF
    We propose a method to produce entangled states of several particles starting from a Bose-Einstein condensate. In the proposal, a single fast π/2\pi/2 pulse is applied to the atoms and due to the collisional interaction, the subsequent free time evolution creates an entangled state involving all atoms in the condensate. The created entangled state is a spin-squeezed state which could be used to improve the sensitivity of atomic clocks.Comment: 4 pages. Minor modification

    Sculpting oscillators with light within a nonlinear quantum fluid

    Full text link
    Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room temperature quantum states [11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualise the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially-separated pump spots. Although oscillating at tuneable THz-scale frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic
    • …
    corecore