7 research outputs found

    Anti-ulcerogenic activity of the root bark extract of the African laburnum <it>“Cassia sieberiana”</it> and its effect on the anti-oxidant defence system in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the widespread use of roots of <it>Cassia sieberiana</it> in managing several health conditions including gastric ulcer disease, there is little scientific data to support the rational phytotherapeutics as an anti-ulcer agent. This paper reports an evaluation of the <it>in vivo</it> anti-oxidant properties of an aqueous root bark extract of <it>C. sieberiana</it> in experimental gastric ulcer rats in a bid to elucidate its mechanism of action.</p> <p>Methods</p> <p>Fisher 344 (F<sub>344</sub>) rats received pretreatment of <it>C. sieberiana</it> root bark extract (500, 750, and 1000 mg/kg body wt.) for 7 days after which there was induction of gastric injury with absolute ethanol. The mean ulcer index (MUI) was calculated and serum total anti-oxidant level determined. Gastric mucosal tissues were prepared and the activity level of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and myeloperoxidase (MPO) were measured together with the level of lipid hydroperoxides (LPO). Statistical difference between treatment groups was analysed using one-way analysis of variance (ANOVA) followed by Dunnett’s <it>post hoc t</it> test. Statistical significance was calculated at P< 0.05.</p> <p>Results</p> <p>The administration of ethanol triggered severe acute gastric ulcer and pretreatment with <it>C. sieberiana</it> root bark extract significantly and dose dependently protected against this effect. The root bark extract also dose dependently and significantly inhibited the ethanol induced decrease in activity levels of the enzymes SOD, CAT and GPx. The extract also inhibited the ethanol-induced decrease in level of serum total anti-oxidant capacity. The increase in ethanol-induced LPO level and MPO activity were also significantly and dose-dependently inhibited by the root bark extract.</p> <p>Conclusions</p> <p>The gastro-cytoprotective effect, inhibition of decrease in activity of gastric anti-oxidant enzymes and MPO as well as the inhibition of gastric LPO level suggests that one of the anti-ulcer mechanisms of <it>C. sieberiana</it> is the anti-oxidant property.</p

    The Lichen Connections of Black Fungi

    No full text
    Many black meristematic fungi persist on rock surfaces\u2014hostile and exposed habitats where high doses of radiation and periods of desiccation alternate with rain and temperature extremes. To cope with these extremes, rock-inhabiting black fungi show phenotypic plasticity and produce melanin as cell wall pigments. The rather slow growth rate seems to be an additional prerequisite to oligotrophic conditions. At least some of these fungi can undergo facultative, lichen-like associations with photoautotrophs. Certain genera presenting different lifestyles are phylogenetic related among the superclass Dothideomyceta. In this paper, we focus on the genus Lichenothelia, which includes border-line lichens, that is, associations of melanised fungi with algae without forming proper lichen thalli. We provide a first phylogenetic hypothesis to show that Lichenothelia belongs to the superclass Dothideomyceta. Further, culture experiments revealed the presence of co-occurring fungi in Lichenothelia thalli. These fungi are related to plant pathogenic fungi (Mycosphaerellaceae) and to other rock-inhabiting lineages (Teratosphaeriaceae). The Lichenothelia thallus-forming fungi represent therefore consortia of different black fungal strains. Our results suggest a common link between rock-inhabiting meristematic and lichen-forming lifestyles of ascomycetous fungi

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)

    Poster presentations.

    No full text

    Families of Dothideomycetes

    No full text
    corecore