3 research outputs found

    Distinct branches of the N-end rule pathway modulate the plant immune response

    Get PDF
    The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants

    Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages

    No full text
    Background and AimsPre-harvest sprouting susceptibility in grain sorghum (Sorghum bicolor) is related to low seed dormancy and reduced embryo sensitivity to inhibition of germination by abscisic acid (ABA). Intra-specific variability for pre-harvest sprouting might involve differential regulation of ABA signalling genes.MethodsSorghum genes encoding homologues for ABA signalling components from other species (ABI5, ABI4, VP1, ABI1 and PKABA1) were studied at the transcriptional and protein level (ABI5) during grain imbibition for two sorghum lines with contrasting sprouting phenotypes and in response to hormones.Key ResultsTranscript levels of these genes and protein levels of ABI5 were higher in imbibed immature caryopses of the more dormant line. Dormancy loss was related to lower transcript levels of these genes and lower ABI5 protein levels in both genotypes. Exogenous ABA inhibited germination of isolated embryos but failed to prevent ABI5 rapid decrease supporting a role for the seed coat in regulating ABI5 levels.ConclusionsSeveral genes involved in ABA signalling are regulated differently in imbibed caryopses from two sorghum lines with contrasting pre-harvest sprouting response before - but not after - physiological maturity. A role for ABI5 in the expression of dormancy during grain development is discussed.Fil:Rodríguez, M.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mendiondo, G.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gudesblat, G.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore