59 research outputs found
Water-pipe smoking and albuminuria: new dog with old tricks
Water-pipe (WP) smoking is on rise worldwide for the past few years, particularly among younger individuals. Growing evidence indicates that WP smoking is as harmful as cigarette smoking. To date, most of the research has focused on acute health effects of WP smoking, and evidence remains limited when it comes to chronic health effects in relation to long-term WP smoking. Therefore, the aim of this study was to examine the association between WP smoking and albuminuria in apparently healthy individuals. This analysis was conducted on data of a population-based cross-sectional study—the Urban Rural Chronic Diseases Study (URCDS). The study sample was recruited from three sites in Pakistan. Trained nurses carried out individual interviews and obtained the information on demographics, lifestyle factors, and past and current medical history. Measurements of complete blood count, lipid profile, fasting glucose level, and 24-hour albuminuria were also made by using blood and urine samples. Albumin excretion was classified into three categories using standard cut-offs: normal excretion, high-normal excretion and microalbuminuria. Multiple logistic regression models were used to examine the relationship between WP smoking and albuminuria. The final analysis included data from 1,626 health individuals, of which 829 (51.0%) were males and 797 (49.0%) females. Of 1,626 individuals, 267 (16.4%) were current WP smokers and 1,359 (83.6%) were non-WP smokers. WP smoking was significantly associated with high-normal albuminuria (OR = 2.33, 95% CI 1.68-3.22, p-value <0.001) and microalbuminuria (OR = 1.75, 95% CI 1.18-2.58, p-value 0.005) after adjustment for age, sex, BMI, social class, hypertension, and diabetes mellitus. WP smoking was significantly associated with high-normal albuminuria and microalbuminuria when analysis was stratified on hypertension and diabetes mellitus categories. WP smoking has a strong association with albuminuria in apparently healthy individuals. More research is warranted to evaluate the temporality of this association between WP smoking and albuminuria
Factors influencing the performance parameters of vacuum glazed smart windows to net zero energy buildings
The progression of smart technologies such as vacuum glazed windows are considered a realistic achievement of the net energy zero buildings (NZEBs). From designers to researchers to builders, there has been an increasing concern about understanding the inter-dependencies between the parameters and influencing factors that determine the performance of vacuum glazed smart windows. This research reviews the performance parameters such as thermal transmittance (U value), thermal resistance (R value), solar transmittance (g value), visible light transmittance (tv value) and thermal resistance of residual gas space (Rgas value). These are inter-dependent on factors such as edge seal, support pillar array, low emittance coatings, getters, and effective evacuation process. This research implicates that effective hermetic edge seal provides longevity such as fusion and solder glass edge sealed vacuum glazing could be cost-effective and energy efficient solution. Stainless steel support pillar array is an unavoidable compromise on U value. This review shows that an increase of the size of glass sheet increases support pillar array improving the overall U value. Also, an addition of low emittance coatings enhances U value whilst maintaining tv value. To improve the overall life span of the vacuum glazed smart window, an incorporation of combo-getter that absorb any gases released from the internal glass surfaces in to into the vacuum cavity from the glass surface which prevents degradation of vacuum pressure and provide long term vacuum pressure stability in the vacuum glazed smart window. A recent improvement in the understanding of evacuation process shows that hot-plate surface heat induction of 60˚C improved the vacuum pressure and mitigates the pump-out hole sealing process whilst lessening the temperature induced stresses
Determination of metals in medicinal plants highly consumed in Brazil
In this work, samples of the medicinal plants: Boldo (Peumus boldus), Castanha da Índia (Aesculus hippocastanum), Chá Verde (Camelia sinensis), Erva Cidreira (Melissa officinalis), Espinheira Santa (Maytenus ilicifolia), Guaraná (Paullinia cupana), Maracujá (Passiflora sp.), Mulungu (Erythrina velutina), Sene (Cassia angustifolia) and Valeriana (Valeriana officinalis) were evaluated BY using the Neutron Activation Analysis technique (NAA- k0) in order to determine the levels of metals and other chemical contaminants. The results showed the presence of non essential elements to the human body. The diversity of chemical impurities found even at low concentration levels, considering the potential for chronic toxicity of these elements, reinforces the need to improve the implementation of good practices by growers and traders, and the hypothesis of lack of quality control in plant products
Evaluation of micro-energy dispersive X-ray fluorescence and histochemical tests for aluminium detection in plants from High Altitude Rocky Complexes, Southeast Brazil
The soils developed under High Altitude Rocky Complexes in Brazil are generally of very low chemical fertility, with low base saturation and high exchangeable aluminium concentration. This stressful condition imposes evolutionary pressures that lead to ecological success of plant species that are able to tolerate or accumulate high amounts of aluminium. Several analytical methods are currently available for elemental mapping of biological structures, such as micro-X-ray fluorescence (μ-EDX) and histochemical tests. The aim of this study was to combine μ-EDX analysis and histochemical tests to quantify aluminium in plants from High Altitude Rocky Complexes, identifying the main sites for Al-accumulation. Among the studied species, five showed total Al concentration higher than 1000 mg kg−1. The main Al-hyperaccumulator plants, Lavoisiera pectinata, Lycopodium clavatum and Trembleya parviflora presented positive reactions in the histochemical tests using Chrome Azurol and Aluminon. Strong positive correlations were observed between the total Al concentrations and data obtained by μ-EDX analysis. The μ-EDX analysis is a potential tool to map and quantify Al in hyperaccumulator species, and a valuable technique due to its non-destructive capacity. Histochemical tests can be helpful to indicate the accumulation pattern of samples before they are submitted for further μ-EDX scrutiny
Rapid light-induced changes in phosphoinositide kinases and H(+)-ATPase in plasma membrane of sunflower hypocotyls.
Is early mobilisation following hip arthroplasty associated with reduced length of stay and good patient satisfaction: Experience from a regional elective orthopaedic unit
Implications of metal accumulation mechanisms to phytoremediation.
Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in metal accumulator plants in Brassicaceae. The integration of resources obtained from model and wild species of the Brassicaceae family will be of utmost importance, bringing most of the diverse fields of plant biology together such as functional genomics, population genetics, phylogenetics, and ecology. Further development of phytoremediation requires an integrated multidisciplinary research effort that combines plant biology, genetic engineering, soil chemistry, soil microbiology, as well as agricultural and environmental engineering
Synthesis of an optimal receiver structure for amplitude modulated pseudo-noise signals
Yield Response of Four Cotton Cultivars under Varying Plant Spacings at CCRI, Sakrand Sindh
- …
