130 research outputs found

    Competition and parasitism in the native White Clawed Crayfish Austropotamobius pallipes and the invasive Signal Crayfish Pacifastacus leniusculus in the UK

    Get PDF
    Many crayfish species have been introduced to novel habitats worldwide, often threatening extinction of native species. Here we investigate competitive interactions and parasite infections in the native Austropotamobius pallipes and the invasive Pacifastacus leniusculus from single and mixed species populations in theUK. We found A. pallipes individuals to be significantly smaller in mixed compared to single species populations; conversely P. leniusculus individuals were larger in mixed than in single species populations. Our data provide no support for reproductive interference as a mechanism of competitive displacement and instead suggest competitive exclusion of A. pallipes from refuges by P. leniusculus leading to differential predation. We screened 52 P. leniusculus and 12 A. pallipes for microsporidian infection using PCR. We present the first molecular confirmation of Thelohania contejeani in the native A. pallipes; in addition, we provide the first evidence for T. contejeani in the invasive P. leniusculus. Three novel parasite sequenceswere also isolated fromP. leniusculus with an overall prevalence of microsporidian infection of 38% within this species; we discuss the identity of and the similarity between these three novel sequences. We also screened a subset of fifteen P. leniusculus and three A. pallipes for Aphanomyces astaci, the causative agent of crayfish plague and for the protistan crayfish parasite Psorospermium haeckeli. We found no evidence for infection by either agent in any of the crayfish screened. The high prevalence of microsporidian parasites and occurrence of shared T. contejeani infection lead us to propose that future studies should consider the impact of these parasites on native and invasive host fitness and their potential effects upon the dynamics of native-invader systems

    Epibiotic pressure contributes to biofouling invader success

    Get PDF
    Reduced competition is a frequent explanation for the success of many introduced species. In benthic marine biofouling communities, space limitation leads to high rates of overgrowth competition. Some species can utilise other living organisms as substrate (epibiosis), proffering a competitive advantage for the epibiont. Additionally, some species can prevent or reduce epibiotic settlement on their surfaces and avoid being basibionts. To test whether epibiotic pressure differs between native and introduced species, we undertook ex situ experiments comparing bryozoan larval settlement to determine if introduced species demonstrate a greater propensity to settle as epibionts, and a reduced propensity to be basibionts, than native species. Here we report that introduced species opportunistically settle on any space (bare, native, or introduced), whereas native species exhibit a strong tendency to settle on and near other natives, but avoid settling on or near introduced basibionts. In addition, larvae of native species experience greater larval wastage (mortality) than introduced species, both in the presence and absence of living substrates. Introduced species’ ability to settle on natives as epibionts, and in turn avoid epibiosis as basibionts, combined with significantly enhanced native larval wastage, provides a comprehensive suite of competitive advantages contributing to the invasion success of these biofouling species

    The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    Get PDF
    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants

    Effects of Endolithic Parasitism on Invasive and Indigenous Mussels in a Variable Physical Environment

    Get PDF
    Biotic stress may operate in concert with physical environmental conditions to limit or facilitate invasion processes while altering competitive interactions between invaders and native species. Here, we examine how endolithic parasitism of an invasive and an indigenous mussel species acts in synergy with abiotic conditions of the habitat. Our results show that the invasive Mytilus galloprovincialis is more infested than the native Perna perna and this difference is probably due to the greater thickness of the protective outer-layer of the shell of the indigenous species. Higher abrasion due to waves on the open coast could account for dissimilarities in degree of infestation between bays and the more wave-exposed open coast. Also micro-scale variations of light affected the level of endolithic parasitism, which was more intense at non-shaded sites. The higher levels of endolithic parasitism in Mytilus mirrored greater mortality rates attributed to parasitism in this species. Condition index, attachment strength and shell strength of both species were negatively affected by the parasites suggesting an energy trade-off between the need to repair the damaged shell and the other physiological parameters. We suggest that, because it has a lower attachment strength and a thinner shell, the invasiveness of M. galloprovincialis will be limited at sun and wave exposed locations where endolithic activity, shell scouring and risk of dislodgement are high. These results underline the crucial role of physical environment in regulating biotic stress, and how these physical-biological interactions may explain site-to-site variability of competitive balances between invasive and indigenous species

    Introduced Pathogens and Native Freshwater Biodiversity: A Case Study of Sphaerothecum destruens

    Get PDF
    A recent threat to European fish diversity was attributed to the association between an intracellular parasite, Sphaerothecum destruens, and a healthy freshwater fish carrier, the invasive Pseudorasbora parva originating from China. The pathogen was found to be responsible for the decline and local extinction of the European endangered cyprinid Leucaspius delineatus and high mortalities in stocks of Chinook and Atlantic salmon in the USA. Here, we show that the emerging S. destruens is also a threat to a wider range of freshwater fish than originally suspected such as bream, common carp, and roach. This is a true generalist as an analysis of susceptible hosts shows that S. destruens is not limited to a phylogenetically narrow host spectrum. This disease agent is a threat to fish biodiversity as it can amplify within multiple hosts and cause high mortalities

    The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler

    Get PDF
    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and Frégate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or Frégate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and Frégate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and Frégate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on Frégate. The loss (Denis) or decline (Frégate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands

    Parasites of non-native freshwater fishes introduced into england and wales suggest enemy release and parasite acquisition

    Get PDF
    When non-native species are introduced into a new range, their parasites can also be introduced, with these potentially spilling-over into native hosts. However, in general, evidence suggests that a high proportion of their native parasites are lost during introduction and infections by some new parasites from the native range might occur, potentially resulting in parasite spill-back to native species. These processes were investigated here using parasite surveys and literature review on seven non-native freshwater fishes introduced into England and Wales. Comparison of the mean numbers of parasite species and genera per population for each fish species England andWaleswith their native ranges revealed\9 % of the native parasite fauna were present in their populations in England and Wales. There was no evidence suggesting these introduced parasites had spilled over into sympatric native fishes. The non-native fishes did acquire parasites following their introduction, providing potential for parasite spill-back to sympatric fishes, and resulted in non-significant differences in overall mean numbers of parasites per populations between the two ranges. Through this acquisition, the non-native fishes also had mean numbers of parasite species and genera per population that were not significantly different to sympatric native fishes. Thus, the non-native fishes in England and Wales showed evidence of enemy release, acquired new parasites following introduction providing potential for spill-back, but showed no evidence of parasite spill-over

    The Ratio and Concentration of Two Monoterpenes Mediate Fecundity of the Pinewood Nematode and Growth of Its Associated Fungi

    Get PDF
    The pinewood nematode (PWN) Bursaphelenchus xylophilus, vectored primarily by the sawyer beetle, Monochamus alternatus, is an important invasive pest and causal agent of pine wilt disease of Chinese Masson pine, Pinus massoniana. Previous work demonstrated that the ratios and concentrations of α-pinene∶β-pinene differed between healthy trees and those trees containing blue-stain fungus (and M. alternatus pupae). However, the potential influence of the altered monoterpene ratios and concentrations on PWN and associated fungi remained unknown. Our current results show that low concentrations of the monoterpenes within petri dishes reduced PWN propagation, whereas the highest concentration of the monoterpenes increased PWN propagation. The propagation rate of PWN treated with the monoterpene ratio representative of blue-stain infected pine (α-pinene∶β-pinene = 1∶0.8, 137.6 mg/ml) was significantly higher than that (α-pinene∶β-pinene = 1∶0.1, 137.6 mg/ml) representative of healthy pines or those damaged by M. alternatus feeding, but without blue stain. Furthermore, inhibition of mycelial growth of associated fungi increased with the concentration of the monoterpenes α-pinene and β-pinene. Additionally, higher levels of β-pinene (α-pinene∶β-pinene = 1∶0.8) resulted in greater inhibition of the growth of the associated fungi Sporothrix sp.2 and Ophiostoma ips strains, but had no significant effects on the growth of Sporothrix sp.1, which is the best food resource for PWN. These results suggest that host monoterpenes generally reduce the reproduction of PWN. However, PWN utilizes high monoterpene concentrations and native blue-stain fungus Sporothrix sp.1 to improve its own propagation and overcome host resistance, which may provide clues to understanding the ecological mechanisms of PWN's successful invasion

    Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe

    Get PDF
    The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids
    corecore