159 research outputs found
Search for New Physics in Lepton + Photon + X Events with L=305 pb-1 of ppbar Collisions at roots=1.96 TeV
We present results of a search for anomalous production of events containing
a charged lepton (either electron or muon) and a photon, both with high
transverse momentum, accompanied by additional signatures, X, including missing
transverse energy (MET) and additional leptons and photons. We use the same
kinematic selection criteria as in a previous CDF search, but with a
substantially larger data set, 305 pb-1, a ppbar collision energy of 1.96 TeV,
and the upgraded CDF II detector. We find 42 Lepton+Photon+MET events versus a
standard model expectation of 37.3 +- 5.4 events. The level of excess observed
in Run I, 16 events with an expectation of 7.6 +- 0.7 events (corresponding to
a 2.7 sigma effect), is not supported by the new data. In the signature of
Multi-Lepton+Photon+X we observe 31 events versus an expectation of 23.0 +- 2.7
events. In this sample we find no events with an extra photon or MET and so
find no events like the one ee+gg+MET event observed in Run I.Comment: 7 pages, 3 figures, 1 table. Accepted to PR
Physical activity, sleep and cardiovascular health data for 50,000 individuals from the MyHeart Counts Study
Studies have established the importance of physical activity and fitness for long-term cardiovascular health, yet limited data exist on the association between objective, real-world large-scale physical activity patterns, fitness, sleep, and cardiovascular health primarily due to difficulties in collecting such datasets. We present data from the MyHeart Counts Cardiovascular Health Study, wherein participants contributed data via an iPhone application built using Apple's ResearchKit framework and consented to make this data available freely for further research applications. In this smartphone-based study of cardiovascular health, participants recorded daily physical activity, completed health questionnaires, and performed a 6-minute walk fitness test. Data from English-speaking participants aged 18 years or older with a US-registered iPhone who agreed to share their data broadly and who enrolled between the study's launch and the time of the data freeze for this data release (March 10 2015-October 28 2015) are now available for further research. It is anticipated that releasing this large-scale collection of real-world physical activity, fitness, sleep, and cardiovascular health data will enable the research community to work collaboratively towards improving our understanding of the relationship between cardiovascular indicators, lifestyle, and overall health, as well as inform mobile health research best practices
Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells
Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical applications, an adequate number of cells are necessary so an extensive expansion is required. However, spontaneous immortalization and malignant transformation of MSCs after culture expansion have been reported in human and mouse, while very few data are present for rat MSCs (rMSCs). In this study, we monitored the chromosomal status of rMSCs at several passages in vitro, also testing the influence of four different cell culture conditions. We first used the conventional traditional cytogenetic techniques, in order to have the opportunity to observe even minor structural abnormalities and to identify low-degree mosaic conditions. Then, a more detailed genomic analysis was conducted by array comparative genomic hybridization. We demonstrated that, irrespective of culture conditions, rMSCs manifested a markedly aneuploid karyotype and a progressive chromosomal instability in all the passages we analyzed and that they are anything but stable during in vitro culture. Despite the fact that the risk of neoplastic transformation associated with this genomic instability needs to be further addressed and considering the apparent genomic stability reported for in vitro cultured human MSCs (hMSCs), our findings underline the fact that rMSCs may not in fact be a good model for effectively exploring the full clinical therapeutic potential of hMSCs
Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation
Background:
The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. /
Methods:
Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. /
Results:
We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. /
Conclusions:
Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF
Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor
The human cathelicidin antimicrobial protein-18 and its C terminal peptide, LL-37, displays broad antimicrobial activity that is mediated through direct contact with the microbial cell membrane. In addition, recent studies reveal that LL-37 is involved in diverse biological processes such as immunomodulation, apoptosis, angiogenesis and wound healing. An intriguing role for LL-37 in carcinogenesis is also beginning to emerge and the aim of this paper was to explore if and how LL-37 contributes to the signaling involved in tumor development. To this end, we investigated the putative interaction between LL-37 and growth factor receptors known to be involved in tumor growth and progression. Among several receptors tested, LL-37 bound with the highest affinity to insulin-like growth factor 1 receptor (IGF-1R), a receptor that is strongly linked to malignant cellular transformation. Furthermore, this interaction resulted in a dose-dependent phosphorylation and ubiquitination of IGF-1R, with downstream signaling confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)-pathway but not affecting phosphatidylinositol 3 kinase/Akt signaling. We found that signaling induced by LL-37 was dependent on the recruitment of β-arrestin to the fully functional IGF-1R and by using mutant receptors we demonstrated that LL-37 signaling is dependent on β-arrestin-1 binding to the C-terminus of IGF-1R. When analyzing the biological consequences of increased ERK activation induced by LL-37, we found that it resulted in enhanced migration and invasion of malignant cells in an IGF-1R/β-arrestin manner, but did not affect cell proliferation. These results indicate that LL-37 may act as a partial agonist for IGF-1R, with subsequent intra-cellular signaling activation driven by the binding of β-arrestin-1 to the IGF-1R. Functional experiments show that LL-37-dependent activation of the IGF-1R signaling resulted in increased migratory and invasive potential of malignant cells
Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone
INTRODUCTION: Studies in xenograft models and experimental models of metastasis have implicated several β3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary tumor, however, the precise contribution of tumor-specific αvβ3 to the spontaneous metastasis of breast tumors from the mammary gland to bone remains unclear. METHODS: We used a syngeneic orthotopic model of spontaneous breast cancer metastasis to test whether exogenous expression of αvβ3 in a mammary carcinoma line (66cl4) that metastasizes to the lung, but not to bone, was sufficient to promote its spontaneous metastasis to bone from the mammary gland. The tumor burden in the spine and the lung following inoculation of αvβ3-expressing 66cl4 (66cl4beta3) tumor cells or control 66cl4pBabe into the mammary gland was analyzed by real-time quantitative PCR. The ability of these cells to grow and form osteolytic lesions in bone was determined by histology and tartrate-resistant acid phosphatase staining of bone sections following intratibial injection of tumor cells. The adhesive, migratory and invasive properties of 66cl4pBabe and 66cl4beta3 cells were evaluated in standard in vitro assays. RESULTS: The 66cl4beta3 tumors showed a 20-fold increase in metastatic burden in the spine compared with 66cl4pBabe. A similar trend in lung metastasis was observed. αvβ3 did not increase the proliferation of 66cl4 cells in vitro or in the mammary gland in vivo. Similarly, αvβ3 is not required for the proliferation of 66cl4 cells in bone as both 66cl4pBabe and 66cl4beta3 proliferated to the same extent when injected directly into the tibia. 66cl4beta3 tumor growth in the tibia, however, increased osteoclast recruitment and bone resorption compared with 66cl4 tumors. Moreover, αvβ3 increased 66cl4 tumor cell adhesion and αvβ3-dependent haptotactic migration towards bone matrix proteins, as well as their chemotactic response to bone-derived soluble factors in vitro. CONCLUSION: These results demonstrate for the first time that tumor-specific αvβ3 contributes to spontaneous metastasis of breast tumors to bone and suggest a critical role for this receptor in mediating chemotactic and haptotactic migration towards bone factors
Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions
Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis
The genomics of heart failure: design and rationale of the HERMES consortium
AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01–0.05) at P < 5 × 10^{-8} under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction
Search for Excited and Exotic Muons in the mu+gamma Decay Channel in p-pbar Collisions at sqrt{s} = 1.96 TeV
We present a search for excited and exotic muon states mu*, conducted using
an integrated luminosity of 371 pb^{-1} of data collected in p-pbar collisions
at sqrt{s} = 1.96 TeV at the Tevatron with the CDF II detector. We search for
associated production of mu+mu* followed by the decay mu* -> mu+gamma,
resulting in the mu+mu+gamma final state. We compare the data to model
predictions as a function of the mass of the excited muon M(mu*), the
compositeness energy scale Lambda, and the gauge coupling factor f. No signal
above the standard model expectation is observed in the mu+gamma mass spectrum.
In the contact interaction model, we exclude 107 < M(mu*) < 853 GeV/c^2 for
Lambda = M(mu*); in the gauge-mediated model, we exclude 100 < M(mu) < 410
GeV/c^2 for f/Lambda = 0.01/GeV. These 95% confidence level exclusions extend
previous limits and are the first hadron collider results on mu* production in
the gauge-mediated model.Comment: Submitted to Phys. Rev. Lett., 7 pages, 4 Figure
Measurement of the B+ production cross section in pp(-) collisions at root s=1960 GeV
We present a new measurement of the B+ meson differential cross section d sigma/dp(T) at root s=1960 GeV. The data correspond to an integrated luminosity of 739 pb(-1) collected with the upgraded CDF detector (CDF II) at the Fermilab Tevatron collider. B+ candidates are reconstructed through the decay B+-\u3e J/psi K+, with J/psi -\u3emu(+)mu(-). The integrated cross section for producing B+ mesons with p(T)\u3e= 6 GeV/c and vertical bar y vertical bar \u3c= 1 is measured to be 2.78 +/- 0.24 mu b
- …
