390 research outputs found

    Non-immune fetal hydrops: etiology and outcome according to gestational age at diagnosis.

    Get PDF
    OBJECTIVE: Fetal hydrops is associated with increased perinatal morbidity and mortality. The etiology and outcome of fetal hydrops may differ according to the gestational age at diagnosis. The aim of this study was to evaluate the cause, evolution and outcome of non-immune fetal hydrops (NIFH), according to the gestational age at diagnosis. METHODS: This was a retrospective cohort study of all singleton pregnancies complicated by NIFH, at the Fetal Medicine Unit at St George's University Hospital, London, UK, between 2000 and 2018. All fetuses had detailed anomaly and cardiac ultrasound scans, karyotyping and infection screening. Prenatal diagnostic and therapeutic intervention, gestational age at diagnosis and delivery, as well as pregnancy outcome, were recorded. Regression analysis was used to test for potential association between possible risk factors and perinatal mortality. RESULTS: We included 273 fetuses with NIFH. The etiology of the condition varied significantly in the three trimesters. Excluding 30 women who declined invasive testing, the cause of NIFH was defined as unknown in 62 of the remaining 243 cases (25.5%). Chromosomal aneuploidy was the most common cause of NIFH in the first trimester. It continued to be a significant etiologic factor in the second trimester, along with congenital infection. In the third trimester, the most common etiology was cardiovascular abnormality. Among the 152 (55.7%) women continuing the pregnancy, 48 (31.6%) underwent fetal intervention, including the insertion of pleuroamniotic shunts, fetal blood transfusion and thoracentesis. Fetal intervention was associated significantly with lower perinatal mortality (odds ratio (OR), 0.30 (95% CI, 0.14-0.61); P  0.05). CONCLUSIONS: An earlier gestational age at diagnosis of NIFH was associated with an increased risk of aneuploidy and worse pregnancy outcome, including a higher risk of perinatal loss. Fetal therapy was associated significantly with lower perinatal mortality. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology

    Protocol for the Smoking, Nicotine and Pregnancy (SNAP) trial: double-blind, placebo-randomised, controlled trial of nicotine replacement therapy in pregnancy

    Get PDF
    Background: Smoking in pregnancy remains a public health challenge. Nicotine replacement therapy (NRT) is effective for smoking cessation in non-pregnant people, but because women metabolise nicotine and cotinine much faster in pregnancy, it is unclear whether this will be effective for smoking cessation in pregnancy. The NHS Health Technology Assessment Programme (HTA)-funded smoking, nicotine and pregnancy ( SNAP) trial will investigate whether or not nicotine replacement therapy ( NRT) is effective, cost-effective and safe when used for smoking cessation by pregnant women. Methods/Design: Over two years, in 5 trial centres, 1050 pregnant women who are between 12 and 24 weeks pregnant will be randomised as they attend hospital for ante-natal ultrasound scans. Women will receive either nicotine or placebo transdermal patches with behavioural support. The primary outcome measure is biochemically-validated, self-reported, prolonged and total abstinence from smoking between a quit date ( defined before randomisation and set within two weeks of this) and delivery. At six months after childbirth self-reported maternal smoking status will be ascertained and two years after childbirth, self-reported maternal smoking status and the behaviour, cognitive development and respiratory symptoms of children born in the trial will be compared in both groups. Discussion: This trial is designed to ascertain whether or not standard doses of NRT ( as transdermal patches) are effective and safe when used for smoking cessation during pregnancy

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Elevated maternal lipids in early pregnancy are not associated with risk of intrapartum caesarean in overweight and obese nulliparous women

    Get PDF
    Background: Maternal overweight and obesity are associated with slower labour progress and increased caesarean delivery for failure to progress. Obesity is also associated with hyperlipidaemia and cholesterol inhibits myometrial contractility in vitro. Our aim was, among overweight and obese nulliparous women, to investigate 1. the role of early pregnancy serum cholesterol and 2. clinical risk factors associated with first stage caesarean for failure to progress at term. Methods: Secondary data analysis from a prospective cohort of overweight/obese New Zealand and Australian nullipara recruited to the SCOPE study. Women who laboured at term and delivered vaginally (n=840) or required first stage caesarean for failure to progress (n=196) were included. Maternal characteristics and serum cholesterol at 14–16 weeks’ of gestation were compared according to delivery mode in univariable and multivariable analyses (adjusted for BMI, maternal age and height, obstetric care type, induction of labour and gestation at delivery ≥41 weeks). Results: Total cholesterol at 14–16 weeks was not higher among women requiring first stage caesarean for failure to progress compared to those with vaginal delivery (5.55 ± 0.92 versus 5.67 ± 0.85 mmol/L, p= 0.10 respectively). Antenatal risk factors for first stage caesarean for failure to progress in overweight and obese women were BMI (adjusted odds ratio [aOR (95% CI)] 1.15 (1.07-1.22) per 5 unit increase, maternal age 1.37 (1.17-1.61) per 5 year increase, height 1.09 (1.06-1.12) per 1cm reduction), induction of labour 1.94 (1.38-2.73) and prolonged pregnancy ≥41 weeks 1.64 (1.14-2.35). Conclusions: Elevated maternal cholesterol in early pregnancy is not a risk factor for first stage caesarean for failure to progress in overweight/obese women. Other clinically relevant risk factors identified are: increasing maternal BMI, increasing maternal age, induction of labour and prolonged pregnancy ≥41 weeks’ of gestation.Elaine M Fyfe, Karen S Rivers, John MD Thompson, Kamala PL Thiyagarajan, Katie M Groom, Gustaaf A Dekker, Lesley ME McCowan and On behalf of the SCOPE consortiu

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges

    Get PDF
    The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 106 cells ml-1. Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges

    Protein kinase C and cardiac dysfunction: a review

    Get PDF
    Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure
    corecore