15 research outputs found

    The fate of received sperm in the reproductive tract of a hermaphroditic snail and its implications for fertilisation.

    Get PDF
    Multiple mating, sperm storage and internal fertilisation enhance sperm competition. The great pond snail can use stored sperm for over three months, and frequently mates with different partners. This hermaphrodite, Lymnaea stagnalis, can also self-fertilise and often produces egg masses containing both selfed and outcrossed eggs. Hence, a sperm recipient may exert considerable control over paternity. Using microsatellite markers, we show that when allosperm are present, all genotyped eggs are cross-fertilised. We also find that sperm have the opportunity to compete, because double matings lead on average to equal paternity for each sperm donor. This indicates that received sperm are randomly mixed in storage. To gain further insight into the mechanisms underlying the process of sperm storage, digestion and utilisation, we investigated the fate of donated sperm at different times after copulation. We find that within 3 h after transfer most sperm have been transported into the sperm-digesting organ. Fluorescent labelling of sperm in histological sections further reveals that allosperm are not stored in the fertilisation pouch, but upstream in either the hermaphroditic duct, seminal vesicles, or ovotestis. Besides contributing to the understanding of the mechanisms underlying sperm competition and/or cryptic sperm choice, this study shows that mixed mating cannot be treated as a separate issue in hermaphroditic animals. © Springer Science+Business Media B.V. 2008

    Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells

    Get PDF
    Background: The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. Methods and Findings: Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM+ memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. Conclusions: The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM+ memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens

    Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis

    Get PDF
    Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis

    Influence of 'Trichobilharzia regenti' (Digenea: Schistosomatidae) on the defence activity of 'Radix lagotis' (Lymnaeidae) haemocytes

    Get PDF
    Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae

    Thermal effect on the life-cycle parameters of the medically important freshwater snail species lymnaea (radix) luteola (lamarck)

    No full text
    The snails Lymnaea (Radix) luteola exhibited marked variations in growth, longevity, and attaining sexual maturity at different temperatures and diets. At 10 C, irrespective of foods, pH and salinity of water, the snails had minimum life span, maximum death rate and lowest growth rate. At 15 C, the growth rate was comparatively higher and the snails survived for a few more days. But at these temperatures they failed to attain sexual maturity. Snails exposed to pH 5 and 9 at 20 , 25 , 30 , 35 C and room temperatures (19.6 -29.6 C); to 0.5, 1.5 and 2.5 NaCl at 20 and 35 C; to 2.5 NaCl at 25 C and room temperatures failed to attain sexual maturity. The snails exposed to pH 7 and different salinity grades at 20 , 25 , 30 , 35 C and room temperatures became sexually mature between 25-93 days depending upon the type of foods used in the culture
    corecore