155 research outputs found

    The role of ground motion duration and pulse effects in the collapse of ductile systems

    Get PDF
    The seismic collapse capacity of ductile singleā€degreeā€ofā€freedom systems vulnerable to Pā€Ī” effects is investigated by examining the respective influence of ground motion duration and acceleration pulses. The main objective is to provide simple relationships for predicting the durationā€dependent collapse capacity of modern ductile systems. A novel procedure is proposed for modifying spectrally equivalent records, such that they are also equivalent in terms of pulses. The effect of duration is firstly assessed, without accounting for pulses, by assembling 101 pairs of long and short records with equivalent spectral response. The systems considered exhibit a trilinear backbone curve with an elastic, hardening and negative stiffness segment. The parameters investigated include the period, negative stiffness slope, ductility and strain hardening, for both bilinear and pinching hysteretic models. Incremental dynamic analysis is employed to determine collapse capacities and derive design collapse capacity spectra. It is shown that up to 60% reduction in collapse capacity can occur due to duration effects for flexible bilinear systems subjected to low levels of Pā€Ī”. A comparative evaluation of intensity measures that account for spectral shape, duration or pulses, is also presented. The influence of pulses, quantified through incremental velocity, is then explicitly considered to modify the long records, such that their pulse distribution matches that of their short spectrally equivalent counterparts. The results show the need to account for pulse effects in order to achieve unbiased estimation of the role of duration in flexible ductile systems, as it can influence the durationā€induced reduction in collapse capacity by more than 20%

    Seismic Response of Underground Lifeline Systems

    Get PDF
    This paper presents and discusses the recent developments related to seismic performance and assessment of buried pipelines. The experience from the performance of pipelines during last earthquakes provided invaluable information and lead to new developments in the analysis and technologies. Especially, the pipeline performance during Canterbury earthquake sequence in New Zealand is taken as a case study here. The data collected for the earthquake sequence are unprecedented in size and detail, involving ground motion recordings from scores of seismograph stations, high resolution light detection and ranging (LiDAR) measurements of vertical and lateral movements after each event, and detailed repair records for thousands of km of underground pipelines with coordinates for the location of each repair. One of the important learnings from the recent earthquakes is that some earthquake resistant design and technologies proved to be working. This provides a motivation to increase international exchange and cooperation on earthquake resistant technologies. Another observation is that preventive maintenance is important to reduce the pipeline damage risk from seismic and other hazards. To increase the applicability and sustainability, seismic improvements should be incorporated into the pipe replacement and asset management programs as part of the preventive maintenance concept. However, it is also important to put in the most proper pipeline from the start as replacing or retrofitting the pipelines later requires substantial investment. In this respect, seismic considerations should be taken into account properly in the design phase

    Finite Fault Analysis and Near Field Dynamic Strains and Rotations due to the 11/05/2011 (Mw5.2) Lorca Earthquake, South-Eastern Spain

    Full text link
    The 11/5/2011 Lorca, Spain earthquake (Mw5.2) and related seismicity produced extensive damage in the town of Lorca and vicinity. During these earthquakes, evidence of rotations and permanent deformations in structures were observed. To analyze these aspects and study the source properties from the near field, the displacement time histories were obtained including the static component at Lorca station. Displacement time histories were computed by an appropriate double time integration procedure of accelerograms. Using these data, the foreshock and mainshock slip distributions were calculated by means of a complete waveform kinematic inversion. To study the dynamic deformations, the 3D tensor of displacement gradients at Lorca station was first estimated by a single station method. Using the finite fault inversion results and by means of a first order finite difference approach, the dynamic deformations tensor at surface was calculated at the recording site. In order to estimate the distribution of the peak dynamic deformations, the calculation was extended to the close neighboring area of the town. The possible influence of the near-field deformations on the surface structures was analyzed.Comment: 29 pages, 8 figure

    Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)

    Get PDF
    Abstract Fifty earthquakes that occurred in Hungary (central part of the Pannonian basin) with local magnitude ML ranging from 0.8 to 4.5 have been analyzed. The digital seismograms used in this study were recorded by six permanent broad-band stations and twenty short-period ones at hypocentral distances between 10 and 327 km. The displacement spectra for P- and SH-waves were analyzed according to Bruneā€™s source model. Observed spectra were corrected for path-dependent attenuation effects using an independent regional estimate of the quality factor QS. To correct spectra for near-surface attenuation, the k parameterwas calculated, obtaining it fromwaveforms recorded at short epicentral distances. The values of the k parameter vary between 0.01 to 0.06 s with a mean of 0.03 s for P-waves and between 0.01 to 0.09 s with a mean of 0.04 s for SH-waves. After correction for attenuation effects, spectral parameters (corner frequency and low-frequency spectral level) were estimated by a grid search algorithm. The obtained seismic moments range from4.21Ɨ1011 to 3.41Ɨ1015 Nm (1.7ā‰¤Mw ā‰¤4.3). The source radii are between 125 and 1343 m. Stress drop values vary between 0.14 and 32.4 bars with a logarithmic mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear relationship between local andmomentmagnitudes has been established. The obtained scaling relations show slight evidence of self-similarity violation. However, due to the high scatter of our data, the existence of self-similarity cannot be excluded

    Characterizing a scientific elite: the social characteristics of the most highly cited scientists in environmental science and ecology

    Get PDF
    In science, a relatively small pool of researchers garners a disproportionally large number of citations. Still, very little is known about the social characteristics of highly cited scientists. This is unfortunate as these researchers wield a disproportional impact on their fields, and the study of highly cited scientists can enhance our understanding of the conditions which foster highly cited work, the systematic social inequalities which exist in science, and scientific careers more generally. This study provides information on this understudied subject by examining the social characteristics and opinions of the 0.1% most cited environmental scientists and ecologists. Overall, the social characteristics of these researchers tend to reflect broader patterns of inequality in the global scientific community. However, while the social characteristics of these researchers mirror those of other scientific elites in important ways, they differ in others, revealing findings which are both novel and surprising, perhaps indicating multiple pathways to becoming highly cited

    Semi-empirical relationships to assess the seismic performance of slopes from an updated version of the Italian seismic database

    Get PDF
    Funder: Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri; doi: http://dx.doi.org/10.13039/100012783; Grant(s): ReLUIS research project - Working Pachage 16: Geotechnical Engineering - Task Group 2: Slope stabilityAbstractSeismic performance of slopes can be assessed through displacement-based procedures where earthquake-induced displacements are usually computed following Newmark-type calculations. These can be adopted to perform a parametric integration of earthquake records to evaluate permanent displacements for different slope characteristics and seismic input properties. Several semi-empirical relationships can be obtained for different purposes: obtaining site-specific displacement hazard curves following a fully-probabilistic approach, to assess the seismic risk associated with the slope; providing semi-empirical models within a deterministic framework, where the seismic-induced permanent displacement is compared with threshold values related to different levels of seismic performance; calibrating the seismic coefficient to be used in pseudo-static calculations, where a safety factor against limit conditions is computed. In this paper, semi-empirical relationships are obtained as a result of a parametric integration of an updated version of the Italian strong-motion database, that, in turn, is described and compared to older versions of the database and to well-known ground motion prediction equations. Permanent displacement is expressed as a function of either ground motion parameters, for a given yield seismic coefficient of the slope, or of both ground motion parameters and the seismic coefficient. The first are meant to be used as a tool to develop site-specific displacement hazard curves, while the last can be used to evaluate earthquake-induced slope displacements, as well as to calibrate the seismic coefficient to be used in a pseudo-static analysis. Influence of the vertical component of seismic motion on these semi-empirical relationships is also assessed.</jats:p

    Capturing geographically-varying uncertainty in earthquake ground motion models or what we think we know may change

    Get PDF
    Our knowledge of earthquake ground motions of engineering significance varies geographically. The prediction of earthquake shaking in parts of the globe with high seismicity and a long history of observations from dense strong-motion networks, such as coastal California, much of Japan and central Italy, should be associated with lower uncertainty than ground-motion models for use in much of the rest of the world, where moderate and large earthquakes occur infrequently and monitoring networks are sparse or only recently installed. This variation in uncertainty, however, is not often captured in the models currently used for seismic hazard assessments, particularly for national or continental-scale studies. In this theme lecture, firstly I review recent proposals for developing ground-motion logic trees and then I develop and test a new approach for application in Europe. The proposed procedure is based on the backbone approach with scale factors that are derived to account for potential differences between regions. Weights are proposed for each of the logic-tree branches to model large epistemic uncertainty in the absence of local data. When local data are available these weights are updated so that the epistemic uncertainty captured by the logic tree reduces. I argue that this approach is more defensible than a logic tree populated by previously published ground-motion models. It should lead to more stable and robust seismic hazard assessments that capture our doubt over future earthquake shaking
    • ā€¦
    corecore