45 research outputs found

    Controlling a spillover pathway with the molecular cork effect

    Get PDF
    Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials. The spillover of hydrogen is notoriously hard to detect or control. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a ‘molecular cork’ effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage system

    The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    Get PDF
    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules

    Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Get PDF
    The recent availability of shale gas has led to a renewed interest in C–H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C–H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C–H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C–H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C–H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    ED Patients with Prolonged Complaints and Repeat ED Visits Have an Increased Risk of Depression

    No full text
    Introduction: The objective of this study was to explore associations between presenting chief complaints of prolonged symptomatology, patient usage of the emergency department (ED), and underlying depression so that emergency physicians may better target patients for depression screening.Methods: A convenience sample of ED patients were administered the Beck Depression Inventory-II (BDI-II) to assess for depression. We correlated completed BDI-II surveys to patient information including demographics, pertinent history of present illness information, and past medical history.Results: Out of 425 participants screened, we identified complaints of two weeks or longer in 92 patients (22%). Of these patients, mild to severe depression was recognized in over half of the population (47), yet only nine patients reported a prior depression diagnosis. These 92 patients also visited the ED three times as frequently as those patients with more acute complaints (p<0.001). Finally, our study showed that patients with mild to severe depression had three times as many ED visits compared to patients with minimal or no depression (p<0.001). Conclusion: Patients with complaints of symptomatology two weeks or longer are more likely to have underlying depression when presenting to the ED. Patients with three or more ED visits within the past year also have a greater incidence of underlying depression. We found a strong correlation between complaints with symptomatology of two weeks or longer and multiple ED visits, in which underlying depression may have contributed to these patients’ ED visits. [West J Emerg Med. 2016;17(5)613-616.]

    Carbon Monoxide Mediated Hydrogen Release from PtCu Single-Atom Alloys: The Punctured Molecular Cork Effect

    No full text
    Pt based materials are used extensively in heterogeneous catalytic processes, but are notoriously susceptible to poisoning by CO. In contrast, highly dilute binary alloys formed of isolated Pt atoms in a Cu metal host, known as PtCu single-atom alloys (SAAs), are more resilient to CO poisoning during catalytic hydrogenation reactions. In this article, we describe how CO affects the adsorption and desorption of H2 from a model PtCu(111) SAA surface and gain a microscopic understanding of their interaction at the Pt atom active sites. By combining temperature programmed desorption and scanning tunneling microscopy with first principles kinetic Monte Carlo we identify CO as a Pt site blocker that prevents the low temperature adsorption and desorption of H2, the so-called molecular cork effect, first realized when examining PdCu SAAs. Intriguingly, for the case of PtCu, H2 desorption occurs before CO release is detected. Furthermore, desorption experiments show a non-linear relationship between CO coverage of the Pt sites and H2 desorption peak temperature. When all the Pt atoms are saturated by CO a very sharp H2 desorption feature is observed 55 K above the regular desorption temperature of H2. Our simulations reveal that the origin of these effects is the fact that desorption of just one CO molecule from a Pt site facilitates the fast release of many molecules of H2. In fact, just 0.7 % of the CO adsorbed at Pt sites has desorbed when the H2 desorption peak maximum is reached. The release of H2 from CO corked PtCu SAA surfaces analogous to the escape of gas from a pressurized container with a small puncture. Given that small changes in CO surface coverage lead to large changes in H2 evolution energetics the punctured molecular cork effect must be considered when modeling reaction mechanisms on similar alloy systems

    Chirality at two-dimensional surfaces: A perspective from small molecule alcohol assembly on Au(111)

    No full text
    The delicate balance between hydrogen bonding and van der Waals interactions determines the stability, structure, and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces. Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging. In this quest, small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions. Here, through a combination of scanning tunneling microscopy and density functional theory, we compare and contrast the adsorption and self-assembly of a range of small alcohols from methanol to butanol on Au(111). We find that longer chained alcohols prefer to form zigzag chains held together by extended hydrogen bonded networks between adjacent molecules. When alcohols bind to a metal surface datively via one of the two lone electron pairs of the oxygen atom, they become chiral. Therefore, the chain structures are formed by a hydrogen-bonded network between adjacent molecules with alternating adsorbed chirality. These chain structures accommodate longer alkyl tails through larger unit cells, while the position of the hydroxyl group within the alcohol molecule can produce denser unit cells that maximize intermolecular interactions. Interestingly, when intrinsic chirality is introduced into the molecule as in the case of 2-butanol, the assembly changes completely and square packing structures with chiral pockets are observed. This is rationalized by the fact that the intrinsic chirality of the molecule directs the chirality of the adsorbed hydroxyl group meaning that heterochiral chain structures cannot form. Overall this study provides a general framework for understanding the effect of simple alcohol molecular adstructures on hydrogen bonded aggregates and paves the way for rationalizing 2D chiral supramolecular assembly
    corecore