580 research outputs found

    Strategies to secure surgical research funding: fellowships and grants.

    Get PDF
    Innovation and advances in surgery are entirely dependent on research. Fellowships and grants are the principal means by which surgical research projects are funded. However, these are scarce and highly competitive. This article offers guidance through the application process for the aspiring academic surgeon. Approaching the application in a timely and structured manner, seeking advice from current and previous award-holders and members of review panels, and obtaining preliminary data are key ingredients to success

    The GABAAα5-selective Modulator, RO4938581, Rescues Protein Anomalies in the Ts65Dn Mouse Model of Down Syndrome

    Get PDF
    Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability (ID). There are no treatments for the cognitive deficits. The Ts65Dn is a partial trisomy mouse model of DS that shows learning and memory (LM) impairments and other abnormalities relevant to those seen in DS. Many drugs and small molecules have been shown to rescue the LM deficits, but little is known about the associated molecular responses. Here, patterns of protein expression are described in hippocampus of Ts65Dn and euploid littermate controls exposed to a battery of LM and behavior tests with and without chronic treatment with the GABAA receptor ?5 subunit-selective negative allosteric modulator, RO4938581, that rescued LM deficits. Levels of 91 proteins/protein modifications, selected for relevance to LM and synaptic plasticity, were measured: 44 of 52 abnormalities present in vehicle-treated Ts65Dn were corrected by RO4938581. Superimposing protein data onto the molecular pathway defining long-term potentiation (LTP) shows that profiles are consistent with both abnormal LTP in vehicle-treated Ts65Dn and its observed rescue by RO4938581. Lastly, comparing these results with those from Ts65Dn treated, using a different protocol, with the NMDA receptor antagonist, memantine, that also rescues LM impairments, identifies common and divergent responses to the two drugs. Expansion of this approach to include additional drugs and DS models would aid in determining critical protein abnormalities and in identifying cocktails of drugs and/or new drug targets that would be effective in clinical trials for ID in DS

    Variation in patient information and rehabilitation regimens after flexor tendon repair in the United Kingdom

    Get PDF
    Introduction There is clinical uncertainty regarding the optimal method of rehabilitation following flexor tendon repair. Many splint designs and rehabilitation regimens are reported in the literature; however, there is insufficient evidence to support the use of any one regimen. The aim of this study was to describe rehabilitation guidelines used in the United Kingdom (UK) following zone I/II flexor tendon repair. Methods Using a cross-sectional design, hand units in the UK were invited to complete a short survey and to upload their flexor tendon rehabilitation guidelines and patient information material. Approval was granted by the British Association of Hand Therapists. Data were extracted in duplicate, using a pre-piloted form, and analysed using descriptive statistics. Results Thirty-five hand units responded (21%), providing 52 treatment guidelines. Three splinting regimens were described, and all involved early active mobilisation: (i) long dorsal-blocking splint (DBS); (ii) short DBS; and (iii) relative motion flexion splint. Duration of full-time splint wear ranged from 4 to 6 weeks. There were variations in splint design and composition of home exercise programmes, particularly for the long DBS. Where reported, recommended return to driving ranged from 8 to 12 weeks, and return to light work activities ranged from 5 to 10 weeks. Discussion Treatment guidelines varied across UK hand therapy departments, suggesting that patients receive differing advice about how to protect, move and use their hand after zone I/II flexor tendon repair. The disparity in splint wear duration, home exercise frequency and prescribed functional restrictions raises potential financial and social implications for patients. Future research should explore rehabilitation burden in addition to clinical outcomes

    The iBRA (implant breast reconstruction evaluation) study: protocol for a prospective multi-centre cohort study to inform the feasibility, design and conduct of a pragmatic randomised clinical trial comparing new techniques of implant-based breast reconstruction.

    Get PDF
    BACKGROUND: Implant-based breast reconstruction (IBBR) is the most commonly performed reconstructive procedure in the UK. The introduction of techniques to augment the subpectoral pocket has revolutionised the procedure, but there is a lack of high-quality outcome data to describe the safety or effectiveness of these techniques. Randomised controlled trials (RCTs) are the best way of comparing treatments, but surgical RCTs are challenging. The iBRA (implant breast reconstruction evaluation) study aims to determine the feasibility, design and conduct of a pragmatic RCT to examine the effectiveness of approaches to IBBR. METHODS/DESIGN: The iBRA study is a trainee-led research collaborative project with four phases:Phase 1 - a national practice questionnaire (NPQ) to survey current practicePhase 2 - a multi-centre prospective cohort study of patients undergoing IBBR to evaluate the clinical and patient-reported outcomesPhase 3- an IBBR-RCT acceptability survey and qualitative work to explore patients' and surgeons' views of proposed trial designs and candidate outcomes.Phase 4 - phases 1 to 3 will inform the design and conduct of the future RCT All centres offering IBBR will be encouraged to participate by the breast and plastic surgical professional associations (Association of Breast Surgery and British Association of Plastic Reconstructive and Aesthetic Surgeons). Data collected will inform the feasibility of undertaking an RCT by defining current practice and exploring issues surrounding recruitment, selection of comparator arms, choice of primary outcome, sample size, selection criteria, trial conduct, methods of data collection and feasibility of using the trainee collaborative model to recruit patients and collect data. DISCUSSION: The preliminary work undertaken within the iBRA study will determine the feasibility, design and conduct of a definitive RCT in IBBR. It will work with the trainee collaborative to build capacity by creating an infrastructure of research-active breast and plastic surgeons which will facilitate future high-quality research that will ultimately improve outcomes for all women seeking reconstructive surgery. TRIAL REGISTRATION: ISRCTN37664281

    Design and Evaluation of Magnetic Hall Effect Tactile Sensors for Use in Sensorized Splints

    Get PDF
    Splinting techniques are widely used in medicine to inhibit the movement of arthritic joints. Studies into the effectiveness of splinting as a method of pain reduction have generally yielded positive results, however, no significant difference has been found in clinical outcomes between splinting types. Tactile sensing has shown great promise for the integration into splinting devices and may offer further information into applied forces to find the most effective methods of splinting. Hall effect-based tactile sensors are of particular interest in this application owing to their low-cost, small size, and high robustness. One complexity of the sensors is the relationship between the elastomer geometry and the measurement range. This paper investigates the design parameters of Hall effect tactile sensors for use in hand splinting. Finite element simulations are used to locate the areas in which sensitivity is high in order to optimise the deflection range of the sensor. Further simulations then investigate the mechanical response and force ranges of the elastomer layer under loading which are validated with experimental data. A 4 mm radius, 3 mm-thick sensor is identified as meeting defined sensing requirements for range and sensitivity. A prototype sensor is produced which exhibits a pressure range of 45 kPa normal and 6 kPa shear. A proof of principle prototype demonstrates how this can be integrated to form an instrumented splint with multi-axis sensing capability and has the potential to inform clinical practice for improved splinting

    “3D Bioprinting for Reconstructive Surgery: Principles, Applications and Challenges”

    Get PDF
    Despite the increasing laboratory research in the growing field of 3D bioprinting, there are few reports of successful translation into surgical practice. This review outlines the principles of 3D bioprinting including software and hardware processes, biocompatible technological platforms and suitable bioinks. The advantages of 3D bioprinting over traditional tissue engineering techniques in assembling cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures are discussed, together with an overview of current progress in bioprinting tissue types relevant for plastic and reconstructive surgery. If successful, this platform technology has the potential to biomanufacture autologous tissue for reconstruction, obviating the need for donor sites or immunosuppression. The biological, technological and regulatory challenges are highlighted, with strategies to overcome these challenges by using an integrated approach from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery

    Sisyphus cooling and amplification by a superconducting qubit

    Full text link
    Laser cooling of the atomic motion paved the way for remarkable achievements in the fields of quantum optics and atomic physics, including Bose-Einstein condensation and the trapping of atoms in optical lattices. More recently superconducting qubits were shown to act as artificial two-level atoms, displaying Rabi oscillations, Ramsey fringes, and further quantum effects. Coupling such qubits to resonators brought the superconducting circuits into the realm of quantum electrodynamics (circuit QED). It opened the perspective to use superconducting qubits as micro-coolers or to create a population inversion in the qubit to induce lasing behavior of the resonator. Furthering these analogies between quantum optical and superconducting systems we demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a near-resonantly driven superconducting qubit. In the quantum optics setup the mechanical degrees of freedom of an atom are cooled by laser driving the atom's electronic degrees of freedom. Here the roles of the two degrees of freedom are played by the LC circuit and the qubit's levels, respectively. We also demonstrate the counterpart of the Sisyphus cooling, namely Sisyphus amplification. Parallel to the experimental demonstration we analyze the system theoretically and find quantitative agreement, which supports the interpretation and allows us to estimate system parameters.Comment: 7 pages, 4 figure

    Deliberating stratospheric aerosols for climate geoengineering and the SPICE project

    Get PDF
    Increasing concerns about the narrowing window for averting dangerous climate change have prompted calls for research into geoengineering, alongside dialogue with the public regarding this as a possible response. We report results of the first public engagement study to explore the ethics and acceptability of stratospheric aerosol technology and a proposed field trial (the Stratospheric Particle Injection for Climate Engineering (SPICE) ‘pipe and balloon’ test bed) of components for an aerosol deployment mechanism. Although almost all of our participants were willing to allow the field trial to proceed, very few were comfortable with using stratospheric aerosols. This Perspective also discusses how these findings were used in a responsible innovation process for the SPICE project initiated by the UK’s research councils

    Quantum Acoustics with Surface Acoustic Waves

    Full text link
    It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this paper, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.Comment: 14 pages, 12 figure

    The NeST (Neoadjuvant systemic therapy in breast cancer) study: National Practice Questionnaire of United Kingdom multi-disciplinary decision making.

    Get PDF
    BACKGROUND: Neoadjuvant systemic therapy (NST) is increasingly used in the treatment of breast cancer, yet it is clear that there is significant geographical variation in its use in the UK. This study aimed to examine stated practice across UK breast units, in terms of indications for use, radiological monitoring, pathological reporting of treatment response, and post-treatment surgical management. METHODS: Multidisciplinary teams (MDTs) from all UK breast units were invited to participate in the NeST study. A detailed questionnaire assessing current stated practice was distributed to all participating units in December 2017 and data collated securely usingREDCap. Descriptive statistics were calculated for each questionnaire item. RESULTS: Thirty-nine MDTs from a diverse range of hospitals responded. All MDTs routinely offered neoadjuvant chemotherapy (NACT) to a median of 10% (range 5-60%) of patients. Neoadjuvant endocrine therapy (NET) was offered to a median of 4% (range 0-25%) of patients by 66% of MDTs. The principal indication given for use of neoadjuvant therapy was for surgical downstaging. There was no consensus on methods of radiological monitoring of response, and a wide variety of pathological reporting systems were used to assess tumour response. Twenty-five percent of centres reported resecting the original tumour footprint, irrespective of clinical/radiological response. Radiologically negative axillae at diagnosis routinely had post-NACT or post-NET sentinel lymph node biopsy (SLNB) in 73.0 and 84% of centres respectively, whereas 16% performed SLNB pre-NACT. Positive axillae at diagnosis would receive axillary node clearance at 60% of centres, regardless of response to NACT. DISCUSSION: There is wide variation in the stated use of neoadjuvant systemic therapy across the UK, with general low usage of NET. Surgical downstaging remains the most common indication of the use of NAC, although not all centres leverage the benefits of NAC for de-escalating surgery to the breast and/or axilla. There is a need for agreed multidisciplinary guidance for optimising selection and management of patients for NST. These findings will be corroborated in phase II of the NeST study which is a national collaborative prospective audit of NST utilisation and clinical outcomes
    • 

    corecore