56 research outputs found

    The importance of endpoint selection: how effective does a drug need to be for success in a clinical trial of a possible Alzheimer's disease treatment?

    Get PDF
    To date, Alzheimer's disease (AD) clinical trials have been largely unsuccessful. Failures have been attributed to a number of factors including ineffective drugs, inadequate targets, and poor trial design, of which the choice of endpoint is crucial. Using data from the Alzheimer's Disease Neuroimaging Initiative, we have calculated the minimum detectable effect size (MDES) in change from baseline of a range of measures over time, and in different diagnostic groups along the AD development trajectory. The Functional Activities Questionnaire score had the smallest MDES for a single endpoint where an effect of 27% could be detected within 3 years in participants with Late Mild Cognitive Impairment (LMCI) at baseline, closely followed by the Clinical Dementia Rating Sum of Boxes (CDRSB) score at 28% after 2 years in the same group. Composite measures were even more successful than single endpoints with an MDES of 21% in 3 years. Using alternative cognitive, imaging, functional, or composite endpoints, and recruiting patients that have LMCI could improve the success rate of AD clinical trials

    Combining hippocampal volume metrics to better understand Alzheimer's disease progression in at-risk individuals

    Get PDF
    To date nearly all clinical trials of Alzheimer’s disease (AD) therapies have failed. These failures are, at least in part, attributable to poor endpoint choice and to inadequate recruitment criteria. Recently, focus has shifted to targeting at-risk populations in the preclinical stages of AD thus improved predictive markers for identifying individuals likely to progress to AD are crucial to help inform the sample of individuals to be recruited into clinical trials. We focus on hippocampal volume (HV) and assess the added benefit of combining HV and rate of hippocampal atrophy over time in relation to disease progression. Following the cross-validation of previously published estimates of the predictive value of HV, we consider a series of combinations of HV metrics and show that a combination of HV and rate of hippocampal atrophy characterises disease progression better than either measure individually. Furthermore, we demonstrate that the risk of disease progression associated with HV metrics does not differ significantly between clinical states. HV and rate of hippocampal atrophy should therefore be used in tandem when describing AD progression in at-risk individuals. Analyses also suggest that the effects of HV metrics are constant across the continuum of the early stages of the disease

    The dynamics of biomarkers across the clinical spectrum of Alzheimer's disease

    Get PDF
    Background Quantifying changes in the levels of biological and cognitive markers prior to the clinical presentation of Alzheimer’s disease (AD) will provide a template for understanding the underlying aetiology of the clinical syndrome and, concomitantly, for improving early diagnosis, clinical trial recruitment and treatment assessment. This study aims to characterise continuous changes of such markers and determine their rate of change and temporal order throughout the AD continuum. Methods The methodology is founded on the development of stochastic models to estimate the expected time to reach different clinical disease states, for different risk groups, and synchronise short-term individual biomarker data onto a disease progression timeline. Twenty-seven markers are considered, including a range of cognitive scores, cerebrospinal (CSF) and plasma fluid proteins, and brain structural and molecular imaging measures. Data from 2014 participants in the Alzheimer’s Disease Neuroimaging Initiative database is utilised. Results The model suggests that detectable memory dysfunction could occur up to three decades prior to the onset of dementia due to AD (ADem). This is closely followed by changes in amyloid-ÎČ CSF levels and the first cognitive decline, as assessed by sensitive measures. Hippocampal atrophy could be observed as early as the initial amyloid-ÎČ accumulation. Brain hypometabolism starts later, about 14 years before onset, along with changes in the levels of total and phosphorylated tau proteins. Loss of functional abilities occurs rapidly around ADem onset. Neurofilament light is the only protein with notable early changes in plasma levels. The rate of change varies, with CSF, memory, amyloid PET and brain structural measures exhibiting the highest rate before the onset of ADem, followed by a decline. The probability of progressing to a more severe clinical state increases almost exponentially with age. In accordance with previous studies, the presence of apolipoprotein E4 alleles and amyloid-ÎČ accumulation can be associated with an increased risk of developing the disease, but their influence depends on age and clinical state. Conclusions Despite the limited longitudinal data at the individual level and the high variability observed in such data, the study elucidates the link between the long asynchronous pathophysiological processes and the preclinical and clinical stages of AD

    Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.

    Get PDF
    Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∌40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≄10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands

    The contribution of X-linked coding variation to severe developmental disorders

    Get PDF
    Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders

    Neurology

    Get PDF
    OBJECTIVE: To determine changes in the incidence of dementia between 1988 and 2015. METHODS: This analysis was performed in aggregated data from individuals >65 years in seven population-based cohort studies in the United States and Europe from the Alzheimer Cohort Consortium. First, we calculated age- and sex-specific incidence rates for all-cause dementia, and then defined non-overlapping 5-year epochs within each study to determine trends in incidence. Estimates of change per 10-year interval were pooled and results are presented combined and stratified by sex. RESULTS: Of 49,202 individuals, 4,253 (8.6%) developed dementia. The incidence rate of dementia increased with age, similarly for women and men, ranging from about 4 per 1,000 person years in individuals aged 65-69 years, to 65 per 1,000 person years for those aged 85-89 years. The incidence rate of dementia declined by 13% per calendar decade (95% CI: 7%-19%), consistently across studies, and somewhat more pronouncedly in men than in women (24% [95% CI 14%-32%] versus 8% [0%-15%]). CONCLUSION: The incidence rate of dementia in Europe and North America has declined by 13% per decade over the past 25 years, consistently across studies. Incidence is similar for men and women, although declines were somewhat more profound in men. These observations call for sustained efforts to finding the causes for this decline, as well as determining their validity in geographically and ethnically diverse populations.COGINUT : Cognition, anti-oxydants, acides gras: approche interdisciplinaire du rÎle de la nutrition dans le vieillissement du cerveauHistoire naturelle du déclin cognitif et du besoin de soins chez le sujet ùgéCommon mechanisms and pathways in Stroke and Alzheimer's disease.VPH Dementia Research Enabled by I

    Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year
    • 

    corecore