498 research outputs found
Recommended from our members
Determination of the structure of fluid lipid bilayer membranes
I. INTRODUCTION The lipid bilayers of natural membranes generally exist in a fluid state which occurs above the gel-toliquid-crystalline phase transition temperature.1 Knowledge of the structure of such “fluid” bilayers, which is of obvious importance for understanding the permeability and stability of membranes, can be obtained from X-ray and neutron diffraction measurements.2,3 However, fluid bilayers present special problems to the structural biologist. We are accustomed to viewing highly detailed images of protein crystallographic structures in which the mean relative positions of small groups of atoms are well defined and measurable. Diffraction studies of phospholipid crystals at low hydrations can provide a similar view of phospholipid molecules.4,5 Such three-dimensional images are not possible for fluid bilayers because of their inherent thermal motion and disorder. However, it is reasonable to consider the average transbilayer distribution of multiatom submolecular groups comprising the lipids and proteins.6 The “image” of the membrane in this case consists of the average spatial distribution of the submolecular groups projected onto a line normal to the plane of the membrane, from which the relative intergroup distances can be determined. It is this image, called a bilayer profile, which we take as “the structure” of the fluid bilayer. Even though it does not provide direct information about membrane structure in the other two dimensions (bilayer plane), this one-dimensional image lets us understand how lipid composition and proteins affect the transbilayer distributions of the submolecular groups.7
Recommended from our members
Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analogue of dioleoylphosphatidylcholine.
We describe in this paper the transbilayer distribution of the bromines of the specifically halogenated phospholipid 1-oleoyl-2-(9,10-dibromostearoyl)-sn-glycero-3- phosphocholine (OBPC). The distribution was determined by X-ray diffraction of oriented multilayers of mixtures of OBPC and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 66% relative humidity by the general approach of Franks et al. (1978) [Nature 276, 530-532]. The bromine distribution of OBPC in the fluid L alpha phase is described accurately by a pair of Gaussian functions located 7.97 +/- 0.27 A from the center of the bilayer with l/e half-widths of 4.96 +/- 0.62 A. We find that OBPC bilayers are accurately described as DOPC bilayers with an additional bromine distribution centered at the position of the double bond of DOPC and conclude that OBPC is an excellent structural isomorph for DOPC under the conditions of these experiments. The distribution obtained is the complete and fully resolved transbilayer image of the halogen label because the broad distribution of the bromines is due entirely to thermal disorder and not to experimental limitations [Wiener, M. C., & White, S. H. (1991a) Biophys. J. 59, 162-173]. The observed width of the bromine distribution indicates that virtually all of the hydrocarbon interior is accessible to the bromines. The distance between the bromine/double-bond position and the headgroup phosphate position was determined from one-dimensional Patterson maps and found to be approximately 12 A. The application of accurately determined bromine distributions to the quantitative interpretation of fluorescence quenching experiments is discussed. A method for the self-consistent global analysis of diffraction data from mixtures that permits the use of data sets with different instrumental scale factors is developed in an Appendix
Recommended from our members
HEADGROUP CONFORMATION OF A LIQUID-CRYSTALLINE PHOSPHATIDYLCHOLINE BILAYER
Beyond element-wise interactions: identifying complex interactions in biological processes
Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations.
Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction.
Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem
How do we get there? Effects of cognitive aging on route memory
© 2017 The Author(s) Research into the effects of cognitive aging on route navigation usually focuses on differences in learning performance. In contrast, we investigated age-related differences in route knowledge after successful route learning. One young and two groups of older adults categorized using different cut-off scores on the Montreal Cognitive Assessment (MoCA), were trained until they could correctly recall short routes. During the test phase, they were asked to recall the sequence in which landmarks were encountered (Landmark Sequence Task), the sequence of turns (Direction Sequence Task), the direction of turn at each landmark (Landmark Direction Task), and to identify the learned routes from a map perspective (Perspective Taking Task). Comparing the young participant group with the older group that scored high on the MoCA, we found effects of typical aging in learning performance and in the Direction Sequence Task. Comparing the two older groups, we found effects of early signs of atypical aging in the Landmark Direction and the Perspective Taking Tasks. We found no differences between groups in the Landmark Sequence Task. Given that participants were able to recall routes after training, these results suggest that typical and early signs of atypical aging result in differential memory deficits for aspects of route knowledge
A method for detergent-free isolation of membrane proteins in their local lipid environment.
Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins
Structure and Dynamics of Cholesterol-Containing Polyunsaturated Lipid Membranes Studied by Neutron Diffraction and NMR
A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, 2H-NMR and 13C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 Å away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid–water interface. Addition of cholesterol partially redistributes DHA density from near the lipid–water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C8–C18 is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin
Recognition of Handwriting from Electromyography
Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear
The Effect of Pulmonary Artery Catheter Use on Costs and Long-Term Outcomes of Acute Lung Injury
Background: The pulmonary artery catheter (PAC) remains widely used in acute lung injury (ALI) despite known complications and little evidence of improved short-term mortality. Concurrent with NHLBI ARDS Clinical Trials Network Fluid and Catheters Treatment Trial (FACTT), we conducted a prospectively-defined comparison of healthcare costs and long-term outcomes for care with a PAC vs. central venous catheter (CVC). We explored if use of the PAC in ALI is justified by a beneficial cost-effectiveness profile. Methods: We obtained detailed bills for the initial hospitalization. We interviewed survivors using the Health Utilities Index Mark 2 questionnaire at 2, 6, 9 and 12 m to determine quality of life (QOL) and post-discharge resource use. Outcomes beyond 12 m were estimated from federal databases. Incremental costs and outcomes were generated using MonteCarlo simulation. Results: Of 1001 subjects enrolled in FACTT, 774 (86%) were eligible for long-term follow-up and 655 (85%) consented. Hospital costs were similar for the PAC and CVC groups (89.2k, p = 0.38). Post-discharge to 12 m costs were higher for PAC subjects (14.4k and mean loss of 0.3 quality-adjusted life years (QALYs)) and a 94.2% probability of being higher than the $100k/QALY willingness-to-pay threshold. Conclusion: PAC use increased costs with no patient benefit and thus appears unjustified for routine use in ALI. Trial Registration: www.clinicaltrials.gov NCT00234767. © 2011 Clermont et al
- …
