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Abstract

Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each
others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations
between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to
achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction
rate. We call ‘‘complex’’ these types of interaction and propose ways to identify them from time-series observations.

Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of
an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to
capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and
applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of
two brain areas and a metabolic reaction.

Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and
is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since
finding all complex causalities (interactions) is an NP hard problem.
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Introduction

Uncovering the existence and direction of interactions between

elements of a set of signals remains a difficult and arduous task that

one has to face if one wants to understand the mechanisms at work

in most biological phenomena and make full use of the high-

throughput experimental data that is now more and more

available. A network structure carefully inferred from experimen-

tal data could provide us with critical information about the

underlying system of investigation and is an important topic in

systems biology. For example, high-throughput data from gene,

metabolic, signaling or transcriptional regulatory networks,

contain information about thousands of genes or proteins. Group

interactions are common in these networks, as nodes may work

cooperatively or competitively to accomplish a task. Another type

of interaction is one where an element has some control on the

interaction between two others. We call ‘‘complex’’ these types of

interactions, to distinguish them from the more usual pairwise,

element-to-element relations traditionally assumed.

The complex interactions differ considerably from the interac-

tions among single nodes that have been extensively studied in the

past decades.For example, one can picture a situation where two

nodes do not interact with a third one when considered invidually

but do once considered together (cooperation). A more subtle

example is the case of a chemical reaction from a substrate S to a

product P catalysed by some enzyme E. The enzyme acts on the

reaction rate from S to P but not from P to S. Being able to

identify such interations from observed data is obviously an

interesting and challenging task (see Fig. 1). To fully understand

the properties of a network, whether it is a gene, a protein or a

neuronal network, it is therefore of prominent importance to

consider complex interactions.

This issue has been realized, and it has been tested intensively in

many experiments. For example, LOF (loss of function) experiments

are performed for double, triple and quadruple mutations. Two

commonly used computational approaches to explore the experi-

mental data and recover the interactions between units in the

literature are Bayesian networks [1] and Granger causality [2–6].

However, to the best of our knowledge, no systematic approach has

been developed to take this issue into account. Here we adopt the

Granger causality approach. The concept of the Granger causality –

originally introduced by Wiener [7] and formulated by Granger [2]
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– has played a considerably important role in investigating the

relationship among stationary time series. Specifically, given two

time series, if the variance of the prediction error for the second time

series at the present time is reduced by including past measurements

from the first time series in the (non)linear regression model, then

the first time series can be said to (Granger-)cause the second time

series. In other words, Xt is a (Granger-) cause of Yt if Yt is better

predicted when Xt is taken into account. Granger causality thus

provides two types of information at once: the magnitude of the

interaction – a non-negative number, with 0 meaning an absence of

interaction, and its direction – the measure is not symmetric in its

arguments. Geweke’s decomposition of a vector autoregressive

process [8–11] led to a set of causality measures which have a

spectral representation and make the interpretation more informa-

tive and useful: the spectrum of Granger causality shows at which

frequencies the interaction takes place.

To tackle the issue of complex interactions we extend the

pairwise Granger causality and the partial Granger causality we

proposed in [12] to complex Granger causality, both in the time and

frequency domains. The previous methods were limited to the

study of interactions between one-dimensional signals. Our

extension accepts multi-dimensional data and thus defines

Granger Causality between groups of signals. We apply our

approach to simulated and experimental data to validate the

efficiency of our approach. With simulated data, we first

demonstrate that our complex Granger causality can reliably detect

group interactions, both in the time and frequency domains. We

then show how Granger causality can detect the overall larger

effect of two signals of little influence. Spurious interactions can be

mistaken for genuine ones when the interaction between two

groups is completely mediated by a third one. We extend the

complex Granger causality to partial complex Granger causality which

removes the influence of the mediating group and thus provides a

more accurate measure of the connection between the two groups.

Complex Granger causality is then applied to three different

biological problems in order to illustrate its ability to capture these

new types of interactions (group-to-signal, group-to-group and

group-to-interaction). First, we use yeast cell-cycle microarray data

to compare results obtained when complexes-to-single gene

connections are not taken into account and when they are. Next,

we use complex Granger causality to study the connections

between brain areas and compare the results obtained from

considering individual signals alone or region averages. Finally, we

consider a well-known metabolic reaction and show that our

method can capture the effect of an enzyme over a chemical

reaction rate.

Figure 1. A schematic plot of the complex interactions. Each time trace (node) is the activity of a gene, protein, substance etc. A circle is a
complex comprising of nodes. Left panel is the interactions among nodes. Right panel, the top complex can exert its influence on the rate between
two complexes (top), or on the complexes themselves (bottom).
doi:10.1371/journal.pone.0006899.g001
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Methods

Complex Granger causality
Granger causality quantifies the strength of the connection from

a signal Xt to a signal Yt. Formalised by Granger ([2,3]), it consists

in comparing the magnitude of the errors before and after

including Xt for predicting Yt. This quantity, often noted FX?Y , is

a non-negative number with the minimum 0 denoting absence of

connection. Granger Causality is traditionally only defined for

one-dimensional time-series. Here, we extend its usual formulation

to the case of multi-dimensional signals. A frequency domain

formulation is also possible and produces a spectrum, rather than a

single value, giving the frequencies at which the interactions occur.

Time Domain Formulation. Consider two multiple stationary

time series X
!

t and Y
!

t with k and l dimensions respectively.

Individually and under fairly general conditions, each time series has

the following vector autoregressive representation

X
!

t~
P?
i~1

A1i X
!

t{iz 1t
�!

Y
!

t~
P?
i~1

B1i Y
!

t{iz 2t
�!

8>>><>>>: ð1Þ

where it
!,i~1,2 are normally distributed random vectors with k and

l dimensions. Their contemporaneous covariance matrix are Cxx and

Cyy with trace being denoted by Tx and Ty respectively. The value of

Tx is non-negative and equals to the summation of all eigenvalues of

Cxx, which measures the accuracy of the autoregressive prediction of

X
!

based on its previous values, whereas the value of Ty represents the

accuracy of predicting the present value of Y
!

based on previous

values of Y
!

.

Jointly, they are represented as

X
!

t~
P?
i~1

A2i X
!

t{iz
P?
i~1

B2i Y
!

t{iz 3t
�!

Y
!

t~
P?
i~1

C2i X
!

t{iz
P?
i~1

D2i Y
!

t{iz 4t
�!

8>>><>>>: ð2Þ

where the noise terms are uncorrelated over time and their

contemporaneous covariance matrix is

S~
Sxx Sxy

Syx Syy

� �
ð3Þ

The submatrices are defined as Sxx~var 3t
�!� �

, Sxy~

cov 3t
�!, 4t

�!� �
, Syx~cov 4t

�!, 3t
�!� �

, Syy~var 4t
�!� �

: If Xt
�!

and

Yt
�!

are independent, the coefficient matrices B2i and C2i are

zero, Cxx~Sxx,Cyy~Syy, Sxy~S
0

yx~0. The traces of Sxx and

Syy are denoted by Txy and Tyx respectively. Consider eq. (2), the

value of Txy represents the accuracy of predicting the present

value of X
!

based on previous values of both X
!

and Y
!

.

According to the causality definition of Granger, if the prediction

of one time series is improved by incorporating past information

of the second time series, then the second time series causes the

first process. We extend them to multiple dimensional cases. If

the trace of the prediction error for the first multiple time series is

reduced by the inclusion of the past of the second multiple time

series, then a causal relation from the second multiple time series

to the first multiple time series exists. We quantify this causal

influence by

F
Y
!

?X
!~ ln Tx

�
Txy

� �
ð4Þ

It is clear that F
Y
!

?X
!~0 when there is no causal influence from

X
!

to Y
!

otherwise F
X
!

?Y
!w0. Moreover, if X

!
and Y
!

are one-

dimensional, the definition reduces to the traditional Granger

Causality and thus is consistent with the latter.

Note that in constrast with our previous extension of Granger

causality ([12]), the complex Granger causality is now formulated

in terms of the trace – and not the determinant – of matrices, for

numerical stability and more theoretical considerations (see

discussion below).

Frequency Domain Formulation. Time series contain

oscillatory aspects in specific frequency bands. It is thus desirable

to have a spectral representation of causal influence. We then

consider the frequency domain formulation of complex Granger

causality. Rewriting eqs. (2) in terms of the lag operator, we have:

A2 Lð Þ B2 Lð Þ
C2 Lð Þ D2 Lð Þ

� �
X
!

t

Y
!

t

 !
~

3t
�!

4t
�!� �

ð5Þ

where A2 0ð Þ~Ik, B2 0ð Þ~0, C2 0ð Þ~0, d2 0ð Þ~Il. Fourier

transforming both sides of eqs.(5) leads to

A2 vð Þ B2 vð Þ
C2 vð Þ D2 vð Þ

� �
X vð Þ
Y vð Þ

� �
~

Ex vð Þ
Ey vð Þ

� �
ð6Þ

where the components of the coefficient matrix are

A2 vð Þ~Ik{
X?
i~1

A2ie
{ivj , B2 vð Þ~{

X?
i~1

B2ie
{ivj ,

C2 vð Þ~{
X?
i~1

C2ie
{ivj , D2 vð Þ~Il{

X?
i~1

D2ie
{ivj ,

Recasting eq.(6) into the transfer function format we obtain

X vð Þ
Y vð Þ

� �
~

Hxx vð Þ Hxy vð Þ
Hyx vð Þ Hyy vð Þ

� �
Ex vð Þ
Ey vð Þ

� �
ð7Þ

the components of H vð Þ are

Hyy vð Þ~ D2 vð Þ{C2 vð ÞA2 vð Þ
{1

B2 vð Þ
� �{1

Hxy vð Þ~{A2 vð Þ{1
B2 vð ÞHyy vð Þ

Hyx vð Þ~{Hyy vð ÞC2 vð ÞA2 vð Þ
{1

Hxx vð Þ~A2 vð Þ
{1

{Hxy vð ÞC2 vð ÞA2 vð Þ
{1

After proper ensemble averaging we have the spectral matrix

Complex Interactions
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S vð Þ~H vð ÞSH� vð Þ

where � denotes the complex conjugate and matrix transpose, and

S is defined in eq. (3).

To obtain the frequency decomposition of the time domain

causality defined in the previous section, we look at the auto-

spectrum of Xt
�!

Sxx(v)~Hxx(v)SxxH�xx(v)zHxx(v)SxyH�xy(v)

zHxy(v)SyxH�xx(v)zHxy(v)SyyH�xy(v)
ð8Þ

Note that the elements of the diagonal of Sxx vð Þ are reals. The

trace of both sides can be represented as

tr(Sxx(v))~tr(Hxx(v)SxxH�xx(v))ztr(Hxx(v)SxyH�xy(v)

zHxy(v)SyxH�xx(v))ztr(Hxy(v)SyyH�xy(v))
ð9Þ

We first consider a simple case Sxy~0. The second term of the

right side of eq.(9) is zero. We have

tr Sxx vð Þð Þ~tr Hxx vð ÞSxxH�xx vð Þ
� �

ztr Hxy vð ÞSyyH�xy vð Þ
� �

ð10Þ

which implies that the spectrum of Xt
�!

has two terms. The first

term, viewed as the intrinsic part, involves only the noise term that

drives Xt
�!

. The second term, viewed as the causal part, involves

only the noise term that drives Yt
�!

.

When Sxy=0, we can normalize eq. (6) by multiplying the

following matrix

P~
Ik 0

{SyxS
{1
xx Il

� �
ð11Þ

to both sides of eq.(6). The result is

A2 vð Þ B2 vð Þ
C3 vð Þ D3 vð Þ

� �
X vð Þ
Y vð Þ

� �
~

Ex vð Þ
~EEy vð Þ

� �
ð12Þ

where C3 vð Þ~C2 vð Þ{SyxS
{1
xx A2 vð Þ, D3 vð Þ~D2 vð Þ{SyxS

{1
xx B2 vð Þ,

~EEy vð Þ~Ey vð Þ{SyxS
{1
xx Ex vð Þ: From the construction it is easy to see

that Ex and ~EEy are uncorrelated. The variance of the noise term for the

normalized Yt
�!

equation is Syy{SyxS
{1
xx Sxy. The new transfer

function eHH vð Þ for eq.(12) is the inverse of the new coefficient matrix

~HH vð Þ~
~HHxx vð Þ ~HHxy vð Þ
~HHyx vð Þ ~HHyy vð Þ

 !
ð13Þ

where

~HHxx vð Þ~Hxx vð ÞzHxy vð ÞSyxS
{1
xx , ~HHxy vð Þ~Hxy vð Þ

~HHyx vð Þ~Hyx vð ÞzHyy vð ÞSyxS
{1
xx , ~HHyy vð Þ~Hyy vð Þ

Note that Ex and ~EEy are uncorrelated. Following the same steps

of eq.(10), the spectrum of Xt
�!

is found to be

Sxx(v)~ ~HHxx(v)Sxx
~HH�xx(v)

z ~HHxy(v)(Syy{SyxS
{1
xx Sxy) ~HH�xy(v)

ð14Þ

The trace of both sides can be represented as

tr(Sxx(v))~tr( ~HHxx(v)Sxx
~HH�xx(v))

ztr( ~HHxy(v)(Syy{SyxS
{1
xx Sxy) ~HH�xy(v))

ð15Þ

Here the first term is interpreted as the intrinsic power and the

second term as the causal power of Xt
�!

due to Yt
�!

. We define the

causal influence from Yt
�!

to Xt
�!

at frequency v as

f
Y
!

?X
! vð Þ~ ln

tr Sxx vð Þð Þ
tr ~HHxx vð ÞSxx

~HH�xx vð Þ
� � ð16Þ

Partial Complex Granger causality
In this section, we define partial Complex causality to remove

the influence of a mediating group from the connection between

two others. This approach allows us to discard indirect interactions

between groups and get a more accurate measure of the relation

between groups. As in the case of complex Granger Causality, it is

defined both in the time and frequency domains.

Time Domain Formulation. Consider three multiple

stationary time series Xt
�!

, Yt
�!

and Zt
�!

with k,l and m

dimensions respectively. We first consider the relationship from

Yt
�!

to Xt
�!

conditioned on Zt
�!

. The joint autoregressive

representation for Xt
�!

and Zt
�!

can be written as

Xt
�!

~
P?
i~1

a1i X
!

t{iz
P?
i~1

c1i Z
!

t{iz 1t
�!

Zt
�!

~
P?
i~1

b1i Z
!

t{iz
P?
i~1

d1i X
!

t{iz 2t
�!

8>>><>>>: ð17Þ

The noise covariance matrix for the system can be represented

as

C~
var 1t

�!� �
cov 1t

�!, 2t
�!� �

cov 2t
�!, 1t

�!� �
var 2t

�!� � !
~

Cxx Cxz

Czx Czz

� �

where var and cov represent variance and covariance respectively.

Extending this representation, the vector autoregressive represen-

tation for a system involving three time series Xt
�!

, Yt
�!

and Zt
�!

can

be written in the following way.

Xt
�!

~
P?
i~1

a2i X
!

t{iz
P?
i~1

b2i Y
!

t{iz
P?
i~1

c2i Z
!

t{iz 3t
�!

Yt
�!

~
P?
i~1

d2i X
!

t{iz
P?
i~1

e2i Y
!

t{iz
P?
i~1

f2i Z
!

t{iz 4t
�!

Zt
�!

~
P?
i~1

g2i X
!

t{iz
P?
i~1

h2i Y
!

t{iz
P?
i~1

k2i Z
!

t{iz 5t
�!

8>>>>>>><>>>>>>>:
ð18Þ

The noise covariance matrix for the above system can be

represented as

S~

var 3t
�!� �

cov 3t
�!

, 4t
�!� �

cov 3t
�!

, 5t
�!� �

cov 4t
�!

, 3t
�!� �

var 4t
�!� �

cov 4t
�!

, 5t
�!� �

cov 5t
�!

, 3t
�!� �

cov 5t
�!

, 4t
�!� �

var 5t
�!� �

0BBBB@
1CCCCA~

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

0B@
1CA

Complex Interactions
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where it
!,i~1, � � � ,5 are the prediction errors, which are uncorre-

lated over time. The conditional variance Cxx{CxzC
{1
zz Czx

measures the accuracy of the autoregressive prediction of X
!

based

on its previous values conditioned on Z
!

whereas the conditional

variance Sxx{SxzS
{1
zz Szx measures the accuracy of the auto-

regressive prediction of X
!

based on its previous values of both

X
!

and Y
!

conditioned on Z
!

. The traces of the matrix

Cxx{CxzC
{1
zz Czx and the matrix Sxx{SxzS

{1
zz Szx are denoted

by Txjz and Txyjz respectively. We define the partial Granger

causality from vector Y
!

to vector X
!

conditioned on vector Z
!

to be

F
Y
!

?X
!
jZ
!~ ln

Txjz
Txyjz

� �
ð19Þ

Frequency Domain Formulation. To derive the spectral

decomposition of the time domain partial Granger causality, we

first multiply the matrix

P1~
Ik {CxzC

{1
zz

0 Im

 !
ð20Þ

to both sides of eq. (17). The normalized equations are represented as:

D11 Lð Þ D12 Lð Þ
D21 Lð Þ D22 Lð Þ

� �
Xt
�!
Zt
�!

 !
~

~XX t

~ZZt

 !
ð21Þ

with D11 0ð Þ~Ik,D22 0ð Þ~Im,D21 0ð Þ~0,cov ~XX t,~ZZtÞ~0,
�

we note

that var ~XX t

� �
~Cxx{CxzC

{1
zz Czx,var ~ZZt

� �
~Czz. For eq. (18), we

also multiply the matrix

P~P3
:P2 ð22Þ

where

P2~

Ik 0 {SxzS
{1
zz

0 Il {SyzS
{1
zz

0 0 Im

0B@
1CA ð23Þ

and

P3~

Ik 0 0

{ Syx{SyzS
{1
zz Szx

� �
Sxx{SxzS

{1
zz Szx

� �{1

Il 0

0 0 Im

0B@
1CA ð24Þ

to both sides of eq.(18). The normalized expression of eq. (18) becomes

B11 Lð Þ B12 Lð Þ B13 Lð Þ
B21 Lð Þ B22 Lð Þ B23 Lð Þ
B31 Lð Þ B32 Lð Þ B33 Lð Þ

0B@
1CA Xt

�!
Yt
�!
Zt
�!

0BB@
1CCA~

xt

yt

zt

0B@
1CA ð25Þ

where xt, yt, zt are independent and their variances ŜSxx,ŜSyy and ŜSzz

with

ŜSzz~Szz

ŜSxx~Sxx{SxzS
{1
zz Szx

ŜSyy~Syy{SyzS
{1
zz Szy{

Syx{SyzS
{1
zz Szx

� �
Sxy{SxzS

{1
zz Szy

� �
Syy{SyzS

{1
zz Szy

� �

8>>>><>>>>:

After Fourier transforming eq. (21) and eq. (25), we can rewrite

these two equations in the following expression:

X vð Þ
Z vð Þ

� �
~

Gxx vð Þ Gxz vð Þ
Gzx vð Þ Gzz vð Þ

� � ~XX vð Þ
~ZZ vð Þ

 !
ð26Þ

and

X vð Þ
Y vð Þ
Z vð Þ

0B@
1CA~

Hxx vð Þ Hxy vð Þ Hxz vð Þ
Hyx vð Þ Hyy vð Þ Hyz vð Þ
Hzx vð Þ Hzy vð Þ Hzz vð Þ

0B@
1CA Ex vð Þ

Ey vð Þ
Ez vð Þ

0B@
1CA ð27Þ

Note that since X vð Þ and Z vð Þ from eq. (26) are identical with

that from eq. (27), we thus have

~XX vð Þ
Y vð Þ
~ZZ vð Þ

0B@
1CA ~

Gxx vð Þ 0 Gxz vð Þ
0 1 0

Gzx vð Þ 0 Gzz vð Þ

0B@
1CA

{1
Hxx vð Þ Hxy vð Þ Hxz vð Þ
Hyx vð Þ Hyy vð Þ Hyz vð Þ
Hzx vð Þ Hzy vð Þ Hzz vð Þ

0B@
1CA Ex vð Þ

Ey vð Þ
Ez vð Þ

0B@
1CA

~

Qxx vð Þ Qxy vð Þ Qxz vð Þ
Qyx vð Þ Qyy vð Þ Qyz vð Þ
Qzx vð Þ Qzy vð Þ Qzz vð Þ

0B@
1CA Ex vð Þ

Ey vð Þ
Ez vð Þ

0B@
1CA

ð28Þ

where Q vð Þ~G{1 vð ÞH vð Þ. Now the power spectrum of ~XX is

S~xx~xx vð Þ~Qxx vð ÞŜSxxQ�xx vð ÞzQxy vð ÞŜSyyQ�xy vð Þ

zQxz vð ÞŜSzzQ�xz vð Þ
ð29Þ

The trace of both sides of eq. (29) can be represented as

tr(S~xx~xx(v))~tr(Qxx(v)ŜSxxQ�xx(v))ztr(Qxy(v)ŜSyyQ�xy(v))

ztr(Qxz(v)ŜSzzQ�xz(v))
ð30Þ

Note that ŜSxx~Sxx{SxzS
{1
zz SzxThe first term can be thought

of as the intrinsic power eliminating exogenous inputs and latent

variables and the remaining two terms as the combined causal

influence from Y
!

mediated by Z
!

. This interpretation leads

immediately to the definition

f
Y
!

?X
!
jZ
! vð Þ~ ln

tr S~xx~xx vð Þð Þ
tr Qxx vð ÞŜSxxQ�xx vð Þ
� � ð31Þ

In previous studies, we showed that by the Kolmogorov formula

([11]) for spectral decompositions and under some mild conditions,

the Granger causality in the frequency domain and in the time

domain satisfy

F
Y
!

?X
!
jZ
!~

1

2p

ðp

{p

f
Y
!

?X
!
jZ
! vð Þdv ð32Þ

All our numerical simulations and applications on real data

strongly suggest this is still the case with the present extension of
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the definition. However, whether it is true in general remains a

conjecture at this stage.

Results

Simulated data: pairwise complex interaction
Example 1. Suppose that 2 simultaneously generated multiple

time series are defined by the equations

Xt
�!

~ A11 X
!

t{1zA12 X
!

t{2z 1t
�!

Yt
�!

~ A21 X
!

t{1zA22 X
!

t{2zB21 Y
!

t{1z 2t
�!

(

where Xt
�!

~ x1t,x2tð ÞT is a 2-dimensional vector, Yt
�!

~ x3t,x4t,x5tð ÞT

is a 3-dimensional vector, 1t
�!, 2t

�!
are normally distributed random

vectors. The coefficient matrices are

A11~
0:95

ffiffiffi
2
p

0

0 0

 !
, A12~

{0:9025 0

{0:5 0

 !
, A21~

0:1 0

0 0

0 0

0BB@
1CCA,

A22~

0 0:4

0 0

0 0

0BB@
1CCA, B21~

0 0 0

{0:5 0:25
ffiffiffi
2
p

0:25
ffiffiffi
2
p

0 {0:25
ffiffiffi
2
p

0:25
ffiffiffi
2
p

0BB@
1CCA

We perform a simulation of this system to generate a dataset of

2000 data points with a sample rate of 200 Hz. The time courses

of the two vectors Xt
�!

and Yt
�!

are plotted in Fig. 2 (A) (inside

ovals). From the model, Xt
�!

is clearly a direct source of Yt
�!

, which

in turn does not have any influence on Xt
�!

, as represented in

Fig. 2.

Fig. 2(B) presents a comparison between the time domain

complex Granger causality and the frequency domain complex

Granger causality (see Fig. 2 (C) for details). Blue error bars are the

value of the complex Granger causality calculated in the time

Figure 2. Application of Complex Granger Causality to simulated data. (A). Time series considered in Example 1. The underlying causal
relationship is represented by an arrow. (B) Comparison between the time domain pairwise Granger causality and the frequency domain pairwise
Granger causality. The partial complex Granger causality and its 95% confidence interval after 1000 replications are shown in blue. The summation
over a frequency range of the corresponding frequency-domain formulation is shown in red. (C) the corresponding spectra in the frequency
domain.
doi:10.1371/journal.pone.0006899.g002
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domain. The standard errors are estimated with a bootstrap of 1000

replications. Red error bars are the summation (integration) of the

complex Granger causality for frequencies in the range of {p,p½ �.
Fig. 2 (C) shows the results obtained in the frequency domain. As

expected, Fig. 2 (C) demonstrates that the decomposition in the

frequency domain fits very well with the Granger causality in the

time domain. The direct causal link from Xt
�!

to Yt
�!

is clearly seen,

as well as the absence of interaction from Yt
�!

to Xt
�!

.

This example demonstrates that complex Granger causality can

detect interactions between groups. In the next example, we show

how a group of signals can have a significant impact on another

signal, even if individual interactions are too weak to be detected.

Example 2. Consider the following model

X1 tð Þ ~ 0:8X1 t{1ð Þ{0:5X1 t{2ð ÞzaX4 t{1ð Þz 1 tð Þ
X2 tð Þ ~ 0:6X2 t{1ð Þ{0:4X2 t{2ð Þz 2 tð Þ
X3 tð Þ ~ 0:9025X3 t{1ð Þ{0:7X3 t{2ð Þz 3 tð Þ
X4 tð Þ ~ 0:3X2 tð Þ{0:25X3 tð Þz 4 tð Þ;

8>>><>>>:
where a is a constant, i,i~1,2,3,4 are independent standard

normal random variables. The time courses of Xi tð Þ,i~1,2,3,4

with a~0:3 are shown in Fig. 3(A) . The parameter a allows us to

control how much influence a combination (X4) of X2 and X3 has

on X1.

In Fig. 3B, the mean values of the Granger causality together

with their 3s confidence intervals are depicted. Treating X2 and

X3 as a single units shows no interaction to X1. However their

combination as X4 shows a significant interaction with X1.

In Fig. 3C, we plot the lowest value of the confidence interval

of Granger causalities as a function of a. By construction, the

contribution of X4 to X1 is a whereas the contributions of X2

and X3 are 0:3a and 0:25a respectively. Thus, even with a

relatively big, X2 and X3 have little influence on X1, which is not

the case for X4. This is captured by the complex Granger

causality: fig. 3C shows very small values for X2?X1 and

X3?X1 even for large values of a whereas X4?X1 increases

very rapidly.

Simulated data: partial complex interaction
Indirect connections can produce spurious links between groups

of interest. We have extended the method further with partial

complex Granger causality, which estimates the complex Granger

causality while reducing the influence of a third group.

Figure 3. Weakly connected signals can have an overall significant effect. (A) The time courses of Xi tð Þ,i~1,2,3,4 with a~0:3. (B) The
average value and its confidence interval of the Granger causality in example 2 when a~0:3. There are no causal relations between X2 and X1 , and
X3 and X1 , but the causal relationship between X4 and X1 is significant. (C) The lowest value of the confidence intervals as a function of a. The inset
shows the increasing, as one would expect, values of X2?X1 and X3?X1 but on too small a scale to be significant.
doi:10.1371/journal.pone.0006899.g003
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Example 3. We modify example 1 to the following model

Xt
�!

~ A11 X
!

t{1zA12 X
!

t{2z 1t
�!

Yt
�!

~ A21 X
!

t{1zA22 X
!

t{2zB21 Y
!

t{1z 2t
�!

Zt
�!

~ B31 Y
!

t{1zC31 Z
!

t{1z 3t
�!

8>><>>:
where Zt

�!
~ x6t,x7tð ÞT , B31~

{0:95 0 0:1
{0:5 0 0

� �
, C31~

0:7 0:2
0:6 0

� �
.

We perform a simulation of this system to generate a data set of

2000 data points with a sample rate of 200 Hz. The time series are

plotted in Fig. 4 (A). From the model, we see that only X?Y and

Y?Z are direct interactions, as depicted in Fig. 4 (A). Fig. 4(B)

presents a comparison between the time domain partial complex

Granger causality and the frequency domain partial complex

Granger causality. They are both in very good agreement. Fig. 4

(C) shows the results obtained in the frequency domain and reveals

at which frequencies the signals interact.

Applying a complex Granger causality from X to Z gives a

value of 0:2, which is misleadingly high given the indirect nature of

their connection. In contrast, considering the partial complex

Granger causality X?ZjY removes the influence of Y and gives a

more accurate value of 0: Z can be completely explained in terms

of Y alone.

Complexes in the yeast cell-cycle
We now apply our method to the binding interactions of

proteins during the cell cycle of the budding yeast Saccharomyces

cerevisiae. A gene can be activated by a combination of multiple

transcription factors (a complex) and our aim is to show that

grouping those transcription factors that act together strengthens

the connection to their target genes. We use the microarray data

produced for a study of the yeast’s cell cycle ([13,14]). We selected

12 time courses corresponding to either transcription factors or

cell-cycle related genes. Among the 5 transcriptions factors, we

know that some belong to the same complexes (MBP1 and SWI6,

SWI4 and SWI6, from MIPS, [15]) and we expect their

combination to have a stronger effect than when considered

individually.

In order to test this claim, we apply Granger causality on all

pairs (Transcription Factor, Gene) and (Complex, Gene). The

Figure 4. Partial Granger causality discards indirect connections. (A). Simulated time series and the underlying causal relationships
considered in example 3. X ,Y and Z are multi-dimensional. (B) Blue and red error bars are defined as in figure 2. (C) Corresponding spectra in the
frequency domain. The partial complex Granger causality and its 95% confidence intervals after 1000 replications.
doi:10.1371/journal.pone.0006899.g004
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inferred network is compared against the true network, built from

the up-to-date data available on the curated YEASTRACT

database ([16]). The resulting network is shown on figure 5. The

program missed only one interaction (thin dashed line) and most of

the calculated connections are true positives (thick lines) - they do

exist in the true network, either from documented evidence (blue

lines) or marked as potential (green lines) in YEASTRACT. The

thin blue lines represent false positives, i.e. links suggested by the

causality measure but not found in the literature. Most of the

network is very close to the true network.

As seen on figure 5B, using a complex can greatly improve the

strength of the interactions between transcription factors and

target genes. Connections that could have been erroneously

discarded at low threshold are more likely to be kept once the

complex is considered.

Directionality of connections between brain regions
In neuroscience, it is often of great importance to uncover

connections between brain regions. Since most techniques are based

on the interactions between individual signals, a workaround is

usually to average them over a region of interest (see [17] for an

example on fMRI data) beforehand. This can be misleading as a

(weighted) average cannot capture the overall effect of individual

interactions. It is especially true when spatial resolution is very high:

interactions between groups of neurons are much more informative

than those between individual neurons. In this section, we consider

the neuronal activity of the left and right inferior temporal cortex

(IT) in a sheep’s brain, before and during a visual stimulus. We

compare three approaches for the investigation of directionality

between the two hemispheres. We first take a pairwise approach, by

computing the Granger causality between each possible pairs of

signals from both hemispheres. We then use the average signals

from each region. Finally, we use the complex Granger causality to

directly calculate the causality between the two regions as a whole.

The recording was carried out when the sheep looked at a

fixation point for one second and then an image (a pair of faces) for

one second. The animal was handled in strict accordance with good

animal practice as defined by the UK Home Office guidelines, and

all animal work was approved by the appropriate committee. We

have the recordings of 64 local field potentials in each region,

sampled at a rate of 1000 Hz. Fig. 6D shows the signals from 5

experiments for both hemispheres. Fourty experiments were done

with the same sheep, totalling 80’000 (406(1000 ms +1000 ms))

time points for each signals. We selected the time series with

significant variation (standard deviation w0:01). After this filtering,

the left and right regions contain respectively 10 and 11 signals.

We first look at relations between individual signals. Figure 6A shows

the distributions of the Granger causalities between all the 110 pairs of

signals between the two regions. In both cases (before and during the

stimulus), the curves are indistinguishable and the causality factors are

low. No clear direction emerges from using single time-series.

Figure 6B shows the Granger causality between region averages.

Before the stimulus, the connections from left ro right and right to

left have very similar distribution, with such a large error over the

40 experiments that it makes the result inconclusive. During the

stimulus, the connection from right to left vanishes, while the

connection from left to right significantly decreases.

In constrast, using the complex Granger causality makes for a

clearer picture, as seen in figure 6C. Here the causality is

calculated between the two regions taken as multi-dimensional

Figure 5. Complexes in a regulatory network. A) Inferred regulatory network of 12 genes known to participate in the yeast cell-cycle. Thick lines
(blue if the interaction is documented, green if only potential according to YEASTRACT) are correct inferences. Thin lines are wrong inferences, with a
dashed line representing a missed connection and a solid line representing a wrongly attributed connection. Yellow nodes denote target factors,
green nodes complexes and blue nodes target genes. B) Improvement of the connection when complexes are considered. Blue dots represent the
Granger causality from one member of the complex to the target gene, red squares represent the Granger causality from the complex to the target
gene. Note that this hypergraph is not to be read as a power graph ([35]) as a connection from a complex to a target gene does not imply significant
interactions from each of the subset elements to the target.
doi:10.1371/journal.pone.0006899.g005

Complex Interactions

PLoS ONE | www.plosone.org 9 September 2009 | Volume 4 | Issue 9 | e6899



time-series. Before stimulus, there is an almost unidirectional flux

of activity from left to right. This is still the case – if less

pronounced – during the stimulus. This clear assymetry between

the left and right hemispheres during face recognition has been

reported in the litterature not only for sheep [18,19] and ungulates

but primates as well [20].

A metabolic network
Metabolic networks consist of elaborate interdependent chem-

ical reactions, whose rates are controled by enzymes. In this

section, we show how Granger Causality can distinguish between

the action of an enzyme and the action of a substrate. For clarity,

we consider two canonical reactions rather than a whole network.

Example 4. Let us consider the following reaction:

S /{{{{{{?
r1

r2

P1 /{{{{{{?
r3

r4

P2

The corresponding dynamic system is as follows:

dS

dt
~ {r1Szr2P1

dP1

dt
~ r1S{r2P1{r3P1zr4P

dP2

dt
~ r3P1{r4P

8>>>>>><>>>>>>:
ð33Þ

From this, we can show that S{P1 is a function of r1 while

SzP1 is not:

Figure 6. Group causality between brain regions A) Distribution of Granger causality between all 110 pairs of left and right signals. B)
Distribution of Granger causality between region averages for each of the 40 experiments. C) Distribution of Complex Granger causality between the
two regions for each of the 40 experiments. Each distribution is summarized by a boxplot showing its median (in red), as well as its first and third
quartile (box). Smallest and largest values are shown with the outer bars and outliers are represented by red crosses. D) Signals from the left and right
hemispheres for 5 experiments. Areas in gray denote the presence of the stimulus.
doi:10.1371/journal.pone.0006899.g006
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Example 5.

d S{P1ð Þ
dt

~ {2r1Sz2r2P2zr3P1{r4P2

d SzP1ð Þ
dt

~ {r3P2zr4P

8>><>>: ð34Þ

Following the same reasoning we used in example 2, we

should expect the Granger Causality from r1 to S{P1ð Þ to be

high and to SzP1ð Þ to be low. However, in pratice we don’t

have direct access to r1. Now suppose that an enzyme E acts

on the reaction rate r1 from S to P1 as r1~
1

1z exp {Eð Þ. We

model the concentration of E as Et~kzvt where k is a constant

and v a normally distributed random variable. We generate

the time courses of S,E,P1 and P2 and compute the partial

complex Granger causalities from E and from S. Fig. 7 shows the

network and the calculated Granger causalities. The data were

generated with r2~0:85, r3~0:65, r4~1:32, k~0:82 and

var vð Þ~0:052. Using different parameters will produce similar

results.

As in example 3, the partial causality is able to weed out indirect

connections: for example, S?P2, P2?S and E?P2 are all zero

or very small. Conversely, direct connections are also recovered:

S?P1, P1?S, P2?P1 P1?P2 are high. But more interestingly,

E? S{P1ð Þ is also high – as high as the more obvious connection

E?r1 is in fact – and E? SzP1ð Þ is low. In other words, E has

the same causal characteristics than r1 or r2 and we can conclude

from the observed data alone that E acts on the reaction rate

between S and P1, even though the reaction rate is not observed

and the relation between E and r1 is non-linear.

Let us contrast this result with the case where E acts as a

substrate and not an enzyme:

E{
r5{{{{{{?S /{{{{{{?

r1

r2

P1 /{{{{{{?
r3

r4

P2

The corresponding dynamic system is:

dS

dt
~ {r1Szr2P1zr5E

dP1

dt
~ r1S{r2P1{r3P1zr4P2

dP2

dt
~ r3P1{r4P2

dE

dt
~ {r5E

8>>>>>>>>>><>>>>>>>>>>:
ð35Þ

Where ri,i~1, � � � ,5 are constants. We set r1~0:8, r2~1:95,

r3~1:85, r4~1:32, r5~1:8 and generate the corresponding data.

Fig.7F and G show the partial complex Granger causalities

calculated from S, P1, P2 and E. As in the previous example,

indirect connections are correctly found to be zero: S?P2,

E?P1, E?P2 etc. Direct connections like E?S, P1?S, P2?P1

etc. have large values, which is expected. In this case however, we

can reject the hypothesis that E acts as an enzyme between S and

P1 since E? S{P1ð Þ and E? SzP1ð Þ are equal and small.

In conclusion, it is possible to use partial complex Granger

causality for uncovering the relations between elements of a

metabolic network and avoiding false positives from indirect

connections. But Granger causality can also detect interactions on

reaction rates, that is, interactions on connections between

elements, as has been demonstrated in this section.

Impact of correlation on Granger causality
The complex Granger causality between a group and

a target signal can be affected by the original signals’ cross-

correlations. Let us consider a model where yi,i~1,2, � � � ,N are

identical random processes. The Granger causality from

yi tð Þ,i~1, � � � ,Nð Þ to their weighted sum y tð Þ :~a
PN

i~1 yi tð Þz t

is log 1za2N 1zr N{1ð Þð Þ
� �

where r is the correlation coefficient

between yi9s and et is normaly distributed. Fig. 8 illustrates how the

complex interaction depends on the correlation. If the original signals

are not correlated (black dashed line), taken as group they have

increasingly higher interaction with y with the number of units. But

this interaction is always higher the more positively cross-correlated

they are. Conversely, negative cross-correlation reduces the interac-

tion, all the way down to zero even though the target signal y is made

up of each of these signals by construction. Not surprisingly,

collaborative activity enhances the interaction, but antagonistic

activity reduces or even suppresses the interaction.

Discussion

We have presented a study for the complex Granger causality.

The time domain complex Granger causality and its frequency

domain decomposition have been successfully applied to simulated

examples and experimental data.

An improvement over Partial Granger Causality
In [12], we have introduced the notion of partial Granger

causality and successfully applied it to gene and neuron data.

Although partial Granger causality is formally formulated for any

dimension (see [12] Eq. 5), it leads to numerical instability when

used on high dimensional data and we actually only restricted

ourselves to the one-dimensional case. Partial Granger causality is

defined as the ratio of the determinants of two theoretically

positive definite matrices. In practice, however, these matrices

often are only positive semidefinite due to the instability of the

linear regression procedure. As a result, the determinants can

reach very small values, even zero (since det Að Þ~P li) and easily

produce very misleading results. Partial Complex Granger

Causality uses the trace of matrices rather than their determinants

and has proved much more stable for multi-dimensional data.

Note that since trace and determinant are equal for one-

dimensional signals, both definitions are equivalent in this case

and results presented in [12] are obviously still valid.

Granger causality is always non-negative in the one-dimensional

case. A natural question is whether this is is still the case with

multi-dimensional signals. This would be equivalent to set an

order in space of variance matrices. It turns out (see e.g. [21], p.

469) that it is possible to do so by setting that for two variance

matrices A and B, A]B if and only if A{B is positive

semidefinite. However, we can easily see that if Y is a complex

Granger cause of X , it does not imply that Cxx]Sxx.

The importance of considering complex interactions
If we want to understand biological processes in details, at least

two things are required: a large amount of accurate data and

suitable computational tools to exploit them. Thanks to the

continuing advances of bio-technology, we are now in a situation

where a wealth of data is not only routinely acquired but also

easily available (e.g. [22,23] for microarray experiments, [24] for

neurophysiology). Moreover, this trend is accelerating, with new
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Figure 7. An enzymatic reaction (A): Time course of the three reactant S,P1 and P2 in Example 4. The enzyme E has direct influence on the reaction
rate r1. (B): Partial Granger causality between three reactants S,P1 and P2 in Example 4. (C): Partial Granger causality from E to other reactants in
Example 4. (D): Partial Granger causality from E to complex of S,P1,P2f g in Example 4. (E): Time course of the three reactant S,P1 and P2 in Example 5.
In this example, the enzyme E has direct influence on S. (F): Partial Granger causality between three substance S,P1 and P2 in example 5. (G): Partial
Granger causality from E to other reactants and groups S,P1,P2f g in example 5.
doi:10.1371/journal.pone.0006899.g007
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technologies becoming available ([25,26]). The challenge now is to

develop the tools necessary to make use of this information.

One approach to uncover the relations between elements of a

system is to use the statistical properties of the measurements to

infer ‘functional’ ([27]) connectivity. This is the case for, for

example, Bayesian networks ([28]), Dynamic Bayesian networks

([29]) or Granger causality networks ([30]. Typically, a global

network is inferred from the connectivity from one element to

another, or from one group of elements (‘parents’ in Bayesian

Network settings) to a single one. This approach has produced

informative results ([31,32]) and is a very active domain of

research.

But there is a real need now to go one step further, beyond these

types of interactions, and to be able to deal with more complex

interactions to reveal the influence of an element on the

connection between two others for example, or to detect group-

to-group interactions. Such complex interactions are ubiquitous in

biological processes: enzymes act on the production rate of

metabolites, information is passed on from one layer of neurons to

the next, transcription factors form complexes which influence

gene activity etc. And such interactions will be missed out with

current methods.

In this paper, we demonstrated that the newly defined complex

Granger Causality is able to capture these kinds of connections.

For example, we showed that considering the effect of transcrip-

tion factors improves network inferences in the case of the yeast-

cell cycle data (Fig. 5). The method was also able to detect the

effect of the enzyme in a metabolic reaction (Fig. 7) and to give a

clearer and more principled picture of brain area interactions than

simple averaging (Fig. 6). Having defined a measure to quantify

these processes is a crucial step towards deducing the complete

mechanism of a biological system. The next challenge, however, is

to come: how to define the correct/relevant grouping.

Future challenges for systems biology
Consider a network of N units (genes, proteins, neurons etc.).

We intend to reveal all interactions in the network, this is the

driving force behind the current systems biology approach ([33]).

The belief is that the network interactions are the key for

understanding many meaningful biology functions: from various

diseases to brain function. For a network of N units, we might

plausibly assume that there are N2 pairwise interactions (including

self-interactions). Furthermore, a biological network is usually

sparse and the total number of interactions should be much

smaller. Hence, with simultaneously recorded data at N units, we

hope to be able to recover all interactions. Here we point out,

however, that the number of actual interactions should be of order

exp Nð Þ, since all possible subsets (groups) of size 1,2, � � � ,N should

be taken into account. This leads to an NP hard problem and a

direct approach is bound to fail to reveal all interactions. The

search space is now much bigger: we are not looking for the

correct directed acyclic graph, or even graph but the correct

hypergraph ([34]). Is a systems biology approach which would

require to reveal all interactions including complex interactions

reported here really feasible?
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