38 research outputs found

    Limit theorems for a localization model of 2-state quantum walks

    Full text link
    We consider 2-state quantum walks (QWs) on the line, which are defined by two matrices. One of the matrices operates the walk at only half-time. In the usual QWs, localization does not occur at all. However, our walk can be localized around the origin. In this paper, we present two limit theorems, that is, one is a stationary distribution and the other is a convergence theorem in distribution.Comment: International Journal of Quantum Information, Vol.9, No.3, pp.863-874 (2011

    Major agricultural changes required to mitigate phosphorus losses under climate change

    Get PDF
    Phosphorus losses from land to water will be impacted by climate change and land management for food production, with detrimental impacts on aquatic ecosystems. Here we use a unique combination of methods to evaluate the impact of projected climate change on future phosphorus transfers, and to assess what scale of agricultural change would be needed to mitigate these transfers. We combine novel high-frequency phosphorus flux data from three representative catchments across the UK, a new high-spatial resolution climate model, uncertainty estimates from an ensemble of future climate simulations, two phosphorus transfer models of contrasting complexity and a simplified representation of the potential intensification of agriculture based on expert elicitation from land managers. We show that the effect of climate change on average winter phosphorus loads (predicted increase up to 30% by 2050s) will be limited only by large-scale agricultural changes (e.g., 20–80% reduction in phosphorus inputs)

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    Get PDF
    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a midsized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health

    Scalar <i>φ</i><sup>4</sup> field theory for active-particle phase separation

    Get PDF
    Recent theories predict phase separation among orientationally disordered active particles whose propulsion speed decreases rapidly enough with density. Coarse-grained models of this process show time-reversal symmetry (detailed balance) to be restored for uniform states, but broken by gradient terms; hence detailed-balance violation is strongly coupled to interfacial phenomena. To explore the subtle generic physics resulting from such coupling we here introduce `Active Model B'. This is a scalar ϕ4\phi^4 field theory (or phase-field model) that minimally violates detailed balance via a leading-order square-gradient term. We find that this additional term has modest effects on coarsening dynamics, but alters the static phase diagram by creating a jump in (thermodynamic) pressure across flat interfaces. Both results are surprising, since interfacial phenomena are always strongly implicated in coarsening dynamics but are, in detailed-balance systems, irrelevant for phase equilibria.Comment: 15 pages, 7 figure

    A gestural repertoire of 1-2year old human children : in search of the ape gestures

    Get PDF
    This project was made possible with the generous financial help of the Baverstock Bequest to the Psychology and Neuroscience Department at the University of St Andrews.When we compare human gestures to those of other apes, it looks at first like there is nothing much to compare at all. In adult humans, gestures are thought to be a window into the thought processes accompanying language, and sign languages are equal to spoken language with all of its features. While some research firmly emphasises the difference between human gestures and those of other apes, the question about whether there are any commonalities has rarely been investigated, and is mostly confined to pointing gestures. The gestural repertoires of nonhuman ape species have been carefully studied and described with regard to their form and function – but similar approaches are much rarer in the study of human gestures. This paper applies the methodology commonly used in the study of nonhuman ape gestures to the gestural communication of human children in their second year of life. We recorded (n=13) children’s gestures in a natural setting with peers and caregivers in Germany and Uganda. Children employed 52 distinct gestures, 46 (89%) of which are present in the chimpanzee repertoire. Like chimpanzees, they used them both singly, and in sequences; and employed individual gestures flexibly towards different goals.Publisher PDFPeer reviewe
    corecore