27 research outputs found

    Generation of a novel three-dimensional scaffold-based model of the bovine endometrium

    Get PDF
    Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E2 and prostaglandin F2α following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E2 receptor 2 (EP2), prostaglandin E2 receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies

    Bradyrhizobium elkanii nod regulon: insights through genomic analysis

    Get PDF
    Abstract A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore