752 research outputs found

    Impurity-enhanced solid-state amorphization : the Ni-Si thin film reaction altered by nitrogen

    Get PDF
    Solid-state amorphization, the growth of an amorphous phase during annealing, has been studied in a wide variety of thin film structures. Whereas research on the remarkable growth of such a metastable phase has mostly focused on strictly binary systems, far less is known about the influence of impurities on such reactions. In this paper, the influence of nitrogen, introduced via ion implantation, is studied on the solid-state amorphization reaction of thin (35 nm) Ni films with Si, using in situ x-ray diffraction (XRD), ex situ Rutherford backscattering spectrometry, XTEM, and synchrotron XRD. It is shown that due to small amounts of nitrogen (<2 at.%), an amorphous Ni-Si phase grows almost an order of magnitude thicker during annealing than for unimplanted samples. Nitrogen hinders the nucleation of the first crystalline phases, leading to a new reaction path: the formation of the metal-rich crystalline silicides is suppressed in favour of an amorphous Ni-Si alloy; during a brief temperature window between 330 and 350 degrees C, the entire film is converted to an amorphous phase. The first crystalline structure to grow is the orthorhombic NiSi phase. We demonstrate that this impurity-enchanced solid-state amorphization reaction occurs only under specific implantation conditions. In particular, the initial distribution of nitrogen upon implantation is crucial: sufficient nitrogen impurities must be present at the interface throughout the reaction. Introducing implantation damage without nitrogen impurities (e.g. by implanting a noble gas) does not cause the enhanced solid-state amorphization reaction. Moreover, we show that the stabilizing effect of nitrogen on amorphous Ni-Si films (with a composition ranging from 40% to 50% Si) is not restricted to thin film reactions, but is a general feature of the Ni-Si system

    The users centered design of a new digital fluorometer

    Get PDF
    The fluorometer is the equipment used in chemical analysis laboratories, research institutes and nuclear fuel cycle companies. This equipment measures an unknown amount of uranium in ores, rivers, etc. The fluorometer functioning is based on the uranium fluorescence when submitted to the ultraviolet radiation incidence. The fluorescence is measured by an electronic optic system with optics filters, photomultiplier tube, and a current amplifier. The user centered design involvers the user in the product development in all phases of the design process. Users are not simply consulted at the beginning of the design process and evaluated the system at the end; they are treated as partners throughout the design process. The user centered design emphasizes the needs and abilities of the users and improves the usability of the equipment. The activity centered design emphasizes the development of the equipment with a deep understanding of the users activities and of the current work practices of the users. The aim of this paper is to present a methodological framework that contributes to the design and evaluation of a new digital fluorometer towards an approach related to the users and their activities. This methodological framework includes users-based testing, interviews, questionnaires, human factors standards and guidelines, the users activity analysis and users satisfaction questionnaire

    Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure

    Get PDF
    Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel

    Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Get PDF
    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes

    Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model

    Get PDF
    Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al

    Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Canakinumab is a fully human anti-interleukin IL-1beta monoclonal antibody, being investigated for the treatment of rheumatoid arthritis (RA). This multicenter, phase II, randomized, double-blind, placebo-controlled, parallel-group, dose-finding study investigated the efficacy and safety of canakinumab in patients with active RA despite ongoing therapy at stable doses of methotrexate.</p> <p>Methods</p> <p>Patients were randomized to receive one of four regimens, in addition to methotrexate, for 12 weeks: canakinumab 150 mg subcutaneously (SC) every 4 weeks (q4wk), canakinumab 300 mg SC (2 injections of 150 mg SC) every 2 weeks, a 600 mg intravenous loading dose of canakinumab followed by 300 mg SC every 2 weeks', or placebo SC every 2 weeks.</p> <p>Results</p> <p>Among 274 patients with evaluable efficacy data, the percentage of responders according to American College of Rheumatology 50 criteria (the primary endpoint, based on a 28-joint count) was significantly higher with canakinumab 150 mg SC q4wk than with placebo (26.5% vs. 11.4%, respectively; p = 0.028). Compared to placebo, this dosage of canakinumab was also associated with significantly more favorable responses at week 12 with respect to secondary endpoints including the Disease Activity Score 28, scores on the Health Assessment Questionnaire and Functional Assessment of Chronic Illness Therapy-Fatigue, swollen 28-joint count, and patient's and physician's global assessments of disease activity. No safety concerns were raised with canakinumab therapy, particularly with regard to infections. Few injection-site reactions occurred.</p> <p>Conclusion</p> <p>The addition of canakinumab 150 mg SC q4wk improves therapeutic responses among patients who have active RA despite stable treatment with methotrexate.</p> <p>Trial Registration</p> <p>(ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00784628">NCT00784628</a>)</p
    • …
    corecore