28 research outputs found

    Respiratory disease and the role of oral bacteria

    Get PDF
    The relationship between oral health and systemic conditions, including the association between poor oral hygiene, periodontal disease, and respiratory disease, has been increasingly debated over recent decades. A considerable number of hypotheses have sought to explain the possible role of oral bacteria in the pathogenesis of respiratory diseases, and some clinical and epidemiological studies have found results favoring such an association. This review discusses the effect of oral bacteria on respiratory disease, briefly introduces the putative biological mechanisms involved, and the main factors that could contribute to this relationship. It also describes the role of oral care for individuals who are vulnerable to respiratory infections

    Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    Get PDF
    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions

    Lrig2-deficient mice are protected against PDGFB-induced glioma

    Get PDF
    Background: The leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins constitute an integral membrane protein family that has three members: LRIG1, LRIG2, and LRIG3. LRIG1 negatively regulates growth factor signaling, but little is known regarding the functions of LRIG2 and LRIG3. In oligodendroglial brain tumors, high expression of LRIG2 correlates with poor patient survival. Lrig1 and Lrig3 knockout mice are viable, but there have been no reports on Lrig2-deficient mice to date. Methodology/Principal Findings: Lrig2-deficient mice were generated by the ablation of Lrig2 exon 12 (Lrig2E12). The Lrig2E12-/- mice showed a transiently reduced growth rate and an increased spontaneous mortality rate; 20-25% of these mice died before 130 days of age, with the majority of the deaths occurring before 50 days. Ntv-a transgenic mice with different Lrig2 genotypes were transduced by intracranial injection with platelet-derived growth factor (PDGF) B-encoding replication-competent avian retrovirus (RCAS)-producing DF-1 cells. All injected Lrig2E12+/+ mice developed Lrig2 expressing oligodendroglial brain tumors of lower grade (82%) or glioblastoma-like tumors of higher grade (18%). Lrig2E12-/- mice, in contrast, only developed lower grade tumors (77%) or had no detectable tumors (23%). Lrig2E12-/- mouse embryonic fibroblasts (MEF) showed altered induction-kinetics of immediate-early genes Fos and Egr2 in response to PDGF-BB stimulation. However, Lrig2E12-/- MEFs showed no changes in Pdgfr alpha or Pdgfr beta levels or in levels of PDGF-BB-induced phosphorylation of Pdgfr alpha, Pdgfr beta, Akt, or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Overexpression of LRIG1, but not of LRIG2, downregulated PDGFR alpha levels in HEK-293T cells. Conclusions: The phenotype of Lrig2E12-/- mice showed that Lrig2 was a promoter of PDGFB-induced glioma, and Lrig2 appeared to have important molecular and developmental functions that were distinct from those of Lrig1 and Lrig3.Included in thesis in manuscript form</p

    Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment

    No full text
    Senescent cells (SnCs) accumulate in many vertebrate tissues with age and contribute to age-related pathologies, presumably through their secretion of factors contributing to the senescence-associated secretory phenotype (SASP). Removal of SnCs delays several pathologies and increases healthy lifespan8. Aging and trauma are risk factors for the development of osteoarthritis (OA), a chronic disease characterized by degeneration of articular cartilage leading to pain and physical disability. Senescent chondrocytes are found in cartilage tissue isolated from patients undergoing joint replacement surgery, yet their role in disease pathogenesis is unknown. To test the idea that SnCs might play a causative role in OA, we used the p16-3MR transgenic mouse, which harbors a p16INK4a (Cdkn2a) promoter driving the expression of a fusion protein containing synthetic Renilla luciferase and monomeric red fluorescent protein domains, as well as a truncated form of herpes simplex virus 1 thymidine kinase (HSV-TK). This mouse strain allowed us to selectively follow and remove SnCs after anterior cruciate ligament transection (ACLT). We found that SnCs accumulated in the articular cartilage and synovium after ACLT, and selective elimination of these cells attenuated the development of post-traumatic OA, reduced pain and increased cartilage development. Intra-articular injection of a senolytic molecule that selectively killed SnCs validated these results in transgenic, non-transgenic and aged mice. Selective removal of the SnCs from in vitro cultures of chondrocytes isolated from patients with OA undergoing total knee replacement decreased expression of senescent and inflammatory markers while also increasing expression of cartilage tissue extracellular matrix proteins. Collectively, these findings support the use of SnCs as a therapeutic target for treating degenerative joint disease.ope
    corecore