1,420 research outputs found

    Equilibrium of Global Amphibian Species Distributions with Climate

    Get PDF
    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions

    Back from a Predicted Climatic Extinction of an Island Endemic: A Future for the Corsican Nuthatch

    Get PDF
    The Corsican Nuthatch (Sitta whiteheadi) is red-listed as vulnerable to extinction by the IUCN because of its endemism, reduced population size, and recent decline. A further cause is the fragmentation and loss of its spatially-restricted favourite habitat, the Corsican pine (Pinus nigra laricio) forest. In this study, we aimed at estimating the potential impact of climate change on the distribution of the Corsican Nuthatch using species distribution models. Because this species has a strong trophic association with the Corsican and Maritime pines (P. nigra laricio and P. pinaster), we first modelled the current and future potential distribution of both pine species in order to use them as habitat variables when modelling the nuthatch distribution. However, the Corsican pine has suffered large distribution losses in the past centuries due to the development of anthropogenic activities, and is now restricted to mountainous woodland. As a consequence, its realized niche is likely significantly smaller than its fundamental niche, so that a projection of the current distribution under future climatic conditions would produce misleading results. To obtain a predicted pine distribution at closest to the geographic projection of the fundamental niche, we used available information on the current pine distribution associated to information on the persistence of isolated natural pine coppices. While common thresholds (maximizing the sum of sensitivity and specificity) predicted a potential large loss of the Corsican Nuthatch distribution by 2100, the use of more appropriate thresholds aiming at getting closer to the fundamental distribution of the Corsican pine predicted that 98% of the current presence points should remain potentially suitable for the nuthatch and its range could be 10% larger in the future. The habitat of the endemic Corsican Nuthatch is therefore more likely threatened by an increasing frequency and intensity of wildfires or anthropogenic activities than by climate change

    Joint analysis of species and genetic variation to quantify the role of dispersal and environmental constraints in community turnover

    Get PDF
    Spatial turnover of biological communities is determined by both dispersal and environmental constraints. However, we lack quantitative predictions about how these factors interact and influence turnover across genealogical scales. In this study, we have implemented a predictive framework based on approximate Bayesian computation (ABC) to quantify the signature of dispersal and environmental constraints in community turnover. First, we simulated the distribution of haplotypes, intra-specific lineages and species in biological communities under different strengths of dispersal and environmental constraints. Our simulations show that spatial turnover rate is invariant across genealogical scales when dispersal limitation determines the species ranges. However, when environmental constraint limits species ranges, spatial turnover rates vary across genealogical scales. These simulations were used in an ABC framework to quantify the role of dispersal and environmental constraints in 16 empirical biological communities sampled from local to continental scales, including several groups of insects (both aquatic and terrestrial), molluscs and bats. In seven datasets, the observed genealogical invariance of spatial turnover, assessed with distance–decay curves, suggests a dispersal-limited scenario. In the remaining datasets, the variance in distance–decay curves across genealogical scales was best explained by various combinations of dispersal and environmental constraints. Our study illustrates how modelling spatial turnover at multiple genealogical scales (species and intraspecific lineages) provides relevant insights into the relative role of dispersal and environmental constraints in community turnover

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Climate and Dispersal: Black-Winged Stilts Disperse Further in Dry Springs

    Get PDF
    Climate affects the abundance and distribution of many species of wildlife. Nevertheless, the potential effects of climate on dispersive behaviour remain unstudied. Here, I combine data from (i) a long-term Black-winged Stilt (Himantopus himantopus) monitoring program, (ii) a capture-recapture marking program in Doñana, and (iii) reports from the Rare Birds Committee in the United Kingdom to analyse at different geographical scales the relationship between climate, survival, philopatry, and dispersive behaviour. Black-winged Stilt populations varied in size in consonance with changes in both the North Atlantic Oscillation (NAO) and local rainfall during the breeding season. Changes in population size are related to changes in philopatry and increases in dispersal beyond the traditional range of the species. The results indicate that climatic conditions influence the dispersive behaviour of individual birds, explaining rapid changes in the local population of this species breeding in unstable Mediterranean wetlands

    Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide

    Get PDF
    Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs) for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE) over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21st century in Chile will range from 129–153% of its current size, while in Australia, it will contract to only 77–49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types), and, depending on the emissions scenario, only 50–60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29–31%) of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome
    corecore