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Abstract 

The multiple uses of land-cover models have led to validation with choice metrics or an ad 

hoc choice of the validation metrics available. To address this, we have identified the major 

dimensions of land-cover maps that ought to be evaluated and devised a Similarity 

Validation (SimiVal) tool. SimiVal uses a linear regression to test a modelled projection 

against benchmark cases of, perfect, observed and systematic-bias, calculated by rescaling 

the metrics from a random case relative to the observed, perfect case. The most informative 

regression coefficients, p-value and slope, are plot on a ternary graph of ‘similarity space’ 

whose extremes are the three benchmark cases. This plot provides a rigorous similarity 

assessment against these extremes and other projections.  SimiVal is tested on projections 

of two deliberately contrasting land-cover models to show the similarity between intra- and 

inter-model parameterisations. Predictive and exploratory models can benefit from the tool. 

Key words: land-cover modeling; validation; landscape metrics; land-cover change; model 

similarity; quantity allocation 
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Software 

Release version:   

SimiVal.v1.0. (09/10/15) 

Availability and cost:   

Free software written in R, with demonstration files and a user guide, available at:  

http://www.luflondon.co.uk/lulcc-models.html 

System requirements:  

R (programming language) www.r-project.org, which runs on most desktop platforms under 

Unix, Windows and Mac operating systems, see www.r-project.org for detailed hardware 

requirements.  

Developer:    

Andrew Bradley, Silwood Park, Imperial College, Ascot, SL5 7PY. UK. 

 

1. Introduction 

Land-Cover Change Models (LCCMs) can be used to support science and decision-making for 

many domains, such as environmental change and sustainability (National Research Council, 

2014). LCCMs are a popular topic for this journal, fresh articles address, the conversion of 

natural habitats (Ralha et al., 2013; Soares-Filho et al., 2013; Tayyebbi et al., 2014), 

agricultural change (Celio et al., 2014; Tayyebbi et al., 2014; Verstegen et al., 2014; Olmedo 

et al., 2015), urban change (Fuglsang et al., 2013; Pijanowski et al., 2014; Tayyebbi et al., 

2014; Liao et al., 2016), improved LCCM methodologies (Haase et al., 2012; Magliocca et al., 

2015; Liao et al., 2016; Verstegen et al., 2016) and, inter-model comparison (Mas et al., 

2014). These examples, and similar LCCMs, produce a land-cover change map, and usually 

involve evaluation of the properties which signify change within these maps. However, after 

the following review of modelling motivation and practices, it is clear these methods are 

http://www.luflondon.co.uk/lulcc-models.html
http://www.r-project.org/
http://www.r-project.org/
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inconsistent and we identify the need for, and provide, a more comprehensive and 

dependable assessment. 

The major goals of LCCMs are to project land-cover change within or beyond an historical 

period, and understand how processes contribute to land-cover change, according to the 

influences of socioeconomic and biophysical drivers input into the model (Verburg et al., 

2003; 2004). The influence of these drivers can often change, i.e. they are often non-

stationary, which may affect the predictive accuracy of any model both within and beyond 

the historical period (Verstegen et al., 2016). Hence multiple models, or many intra-model, 

projections are often made, to predict, or project a range of possible outcomes. 

Furthermore, on a typical land-cover scenario the outcome may vary between different 

models because of the way individual LCCMs carry out similar procedures (Mas et al., 2014). 

In these cases, recent studies have allowed for model variability using multiple models 

(Pérez-Vega et al., 2012; Olmedo et al., 2015), and using multiple calibrations of the same 

model (Soares-Filho et al., 2013). Following evaluation, how similar these model projections 

are to reality or a speculated outcome, and what land-cover changes they determine, can 

give an insight into which land-cover change processes are significant (e.g. Celio et al., 

2014). The operator is then better informed about how to interpret, use or improve a LCCM 

(Pontius and Millones, 2011).  

Quantification of this similarity between projections and the observed map can be 

accomplished with validation, a statistical measure representing the goodness of fit 

between the projected and observed maps over the same time period (Costanza, 1989; 

Pontius and Schneider, 2001; Pontius, 2002). There are many dimensions of land-cover 

maps that can be validated, each with their own metric or metrics (section 2). However, 

modellers are free to choose, and may well favour, which dimension to validate depending 

on the function of a LCCM and the discipline of a researcher (Verburg et al., 2004). 

Moreover, recent literature illustrates how similarity between maps is reported in different 

ways. For example, metrics may be summarised as bar charts (Tayyebbi et al., 2014), 

multiple metrics may be summarised as cumulative bar graphs (Ralha et al., 2013; Olmedo 

et al., 2015), and validation scores from intra-model projections have been visualised on 

radar plots (Soares-Filho et al., 2014). This lack of consistency in evaluation, reporting and 

appraisal of model outputs can be problematic for retrospective inter-model comparisons 
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(Rosa et al., 2014).  Some basic, consistent reporting would broaden the application of 

LCCMs into the ever increasing environment of inter-disciplinary research. This paper 

presents a validation tool that goes some way to address these issues with land-cover 

change validation. In doing so we respond to a call for improved validation methods (Brown 

et al., 2013), a challenging prospect since LCCMs have multiple goals.  

2. Validation Methods  

Spatially explicit LCCMs produce land-cover maps that show spatial patterns in the 

landscape, the location of change, and the quantity of change between different land-cover 

types (unless quantity is explicitly specified in the LCCM itself). Increasingly modellers have 

turned their attention to the evaluation of model products, particularly if the goals of the 

modelling are predictive in nature. This takes place with some form of ‘pattern validation’ 

(Brown et al., 2013) of the model projection against an observed reference. The observed 

reference is usually a land-cover map derived from aerial photographs (e.g. Lopez and Sierra 

2010) or satellite data sources, such as Landsat (e.g. Messina and Walsh, 2001), or MODIS 

(e.g. Etter et al., 2006), but they can also include other features such as fire hotspots (e.g. 

Silvestrene et al., 2011). In contrast to predictive modelling, researchers may project with an 

explanatory model to design policies and address specific societal issues (Filatova et al., 

2013). Validation of output patterns from an explanatory model is generally considered to 

be of limited value because, the interest of the investigation is not to replicate actual 

outcomes, but to explain which parameterisations lead to particular spatial outcomes 

(Deadman et al., 2004). In these cases, attempts are made to validate the processes in the 

model (e.g. Hasse et al., 2010; Sun and Müller, 2013). While reproduction of realistic output 

patterns may contribute to process validation, we acknowledge that additional information 

about the specific rules and mechanisms, temporal dynamics of model output, and 

sensitivity of model outputs to changes in parameters or processes are also needed. Here 

we focus on the procedures for ‘pattern validation’ of map-based outputs from LCCMs. 

In the last few decades, researchers have concentrated on the development of pattern 

validation methods (see Pontius et al., 2011) and a suite of procedures have appeared, each 

with their own advantages and limitations (Table 1). These validation methods help score 

the accuracy of model calibration and output with respect to key dimensions of the land-
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cover maps. The key dimensions are identified as: differences in location, quantity, 

landscape structure, change probability and optimal model resolution. However, some 

metrics such as the popular Kappa statistics (Pontius, 2000), have now been described to 

have limited value to validation (Pontius and Millones, 2011).   

Validation rarely covers all of these key dimensions, and it is only possible to evaluate LCCM 

performance with the dimension that a researcher has chosen to appraise their model with. 

Model to model this appears ad hoc, as no consistent validation procedure is ever applied, 

thus it is difficult to evaluate and compare the strengths and weaknesses of different 

models (Rosa et al., 2014). Presently, researchers may select one of the existing validation 

methods, use several together, and sometimes combine those methods or use their own 

validation scheme.  As a result, the LCCM literature is replete with different combinations of 

approaches to validating land-cover maps: Kfuzzy and Receiver Operating Characteristic (ROC) 

(Lapola et al., 2011); the Kappa indices (Michalski et al., 2008); Kappa indices and Area 

Under Curve (AUC) (Sangermano et al., 2012); error matrix, ROC and Chi squared (Lopéz et 

al., 2010; Perez-Vega et al., 2012); ROC (Pontius and Pacheco 2004; Tayyebi et al., 2014); 

ROC and expert knowledge (Wassenaar et al., 2007); ROC and conversion probabilities 

(Vance and Iovanna 2008); multiple resolution filtering and landscape metrics (Soares-Filho 

et al., 2002); landscape metrics (Verstegen et al.,  2014); fuzzy similarity (Almieda et al., 

2008; Soares-Filho et al., 2013); ROC, fuzzy map and time series analysis (Silvestrini et al., 

2011); AUC, distance-based metrics and pixel-by-pixel comparisons (Rosa et al. 2013); 

producers accuracy and visual inspection (Walker et al., 2004); cross tabulation (Etter et al., 

2006; Messina and Walsh 2001; Geoghegan et al., 2004; Walsh et al., 2008; Ralha et al., 

2013; Celio et al., 2014; Olmedo et al., 2015); and comparing a time series of land-cover 

maps to a statistical envelope of several model projections (Evans et al., 2001). Spatial and 

quantity allocation are the key dimensions usually covered by these combinations, whilst 

configuration of landscape structure is less frequently considered and should be included 

(Mas et al., 2014). This may be because modellers consider that the correct spatial 

allocation will logically correct the problems with landscape structure. Conversely, the 

reverse may also be true in that correct simulation of landscape structure may help spatial 

allocation, particularly if a model is built to simulate land-cover change via landscape 

structural changes, e.g. the expander and patch function in DINAMICA (Soares-Filho et al., 
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2002). Awkwardly, metrics of landscape structure do not lend themselves well to validation 

as it is uncertain how different the projected landscape metric values have to be from the 

observed landscape metric values to signal a poorly replicated landscape structure. A similar 

issue arises when quantifying the degree of similarity in spatial allocation.  

To reduce the temptation for researchers to use a selection of metrics that favours a 

particular model, a procedure that avoids ad hoc selection of comparison metrics and covers 

many different dimensions of land-cover maps, is required. It must be a generic approach 

that evaluates the key dimensions of quantity, location allocation accuracy, and overall 

spatial configuration between maps. The procedure must also overcome the difficulty of 

metrics with boundless ranges that cannot describe the magnitude of difference between 

observed and predicted projections, such as landscape metrics. As there are a number of 

goals in land-change modelling, such a validation method would need to be flexible in that 

the method can provide:  

(i) for a modeller, who wishes to validate how well the model parameterisation 

correctly replicates the observed land-cover patterns, allowing them to evaluate the 

similarity of projections beyond an historical period, assuming stationary processes. 

This may be when the goal is the validation of a single model run; 

(ii) a consistent assessment, for several model runs, so a modeller will be better 

informed on how to interpret or reject different model parameterisations based on 

their strengths and weaknesses, and thereby help inform a subsequent round of 

model improvement. This may be when the goal is for an intra- or inter-model 

comparison;  

(iii) a relative measure, to show the range of land-cover possibilities, compared against 

either reality or a speculative target land-cover map, to understand how different 

parameterisations (or processes) of the same model project land-cover change. This 

may be when exploratory modelling is the goal.  

To address these needs we have developed and present the Similarity Validation (SimiVal) 

tool. The output presents an intuitively interpretable graphic so a modeller can quickly 

assess how dissimilar the projections are from reality and, understand how different 

parameterisations of models influence the key dimensions of land-cover projections. To 
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demonstrate the capabilities of SimiVal, we deliberately use two structurally different 

LCCMs to provide degrees of dissimilarity from the observed land-cover and between each 

model projection. We do not focus on the meaning of the outcomes of the model 

projections as the aim of the paper is to demonstrate the versatility of the validation tool.
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Validation and dimension  Quantification Comments 

Visual inspection  

General appraisal of model projection in 

many dimensions 

 

Qualitative 

 

Intuitively identifies problem areas that a computer cannot but it is 

subjective and the operator may choose only to scrutinise one 

dimension of the output. 

Receiver Operating Characteristic 

(Pontius and Schneider, 2001) 

Characterises relationship between 

predicted probability of events (e.g. 

transitions) and observed discrete 

phenomenon 

 

 

0-1 (0-100%) 

 

Often incorrectly used in validation of final land-cover projections 

but underexploited and open to more detailed interpretation in the 

validation of calibration data (Pontius and Parmentier, 2014). 

Cross Tabulation Matrices 

(Congalton and Green, 1999) 

Correct transitions and quantity of 

transitions. Methods can be two (Pontius 

and Cheuk, 2006) and three dimensional 

(Pontius and Millones, 2011) 

Quantity allocation 

 

 

True positives, true negatives, false 

positives (commission error), false 

negatives (omission error) 

 

It becomes more complex to explain and validate land-cover 

processes with increasing numbers of land-covers. No structural 

information about the landscape. 

 

kFuzzy maps    

Table 1: A selection of land-cover model validation procedures, indicating the validated dimension, quantitative measure, and limitations 
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(and multiple resolution filtering)  

(Costanza, 1989; Hagen, 2003; Almieda et 

al., 2008) 

Spatial allocation 

 

 

% and window resolution 

 

Intra- and inter-model comparison may not be possible as the best 

resolution may vary for each parameterisation. Does not evaluate 

landscape structure.  

Kappa statistics  

(Pontius, 2000)  

(i) Kappa - quantity 

(ii) Kstandard – quantity 

(iii) Kno – quantity 

(iv) Klocation - location 

(v) Kquantity - quantity  

 

 

1 to -1 

% 

% 

% 

% 

 

Criticised by creator as having limited use (Pontius and Millones, 

2011) because of: 1. Ambiguity over the numerator / denominator 

determining value of ratio; 2. Does not separate two components of 

disagreement, quantity and allocation; 3 The Kstandard is no 

different from proportion correct, and; 4. Kappa compares to 

randomness not a null or naïve model. 

 

Three way map comparison statistics 

(Pontius et al., 2008) 

  

(i) Quantity disagreement 

Quantity allocation 

% These metrics concentrate on spatial and quantity allocation and do 

not evaluate landscape structure.  

(ii) Near and far location disagreement 

Spatial allocation 

%  

(iii) Users and producers accuracy 

Quantity allocation 

% and score >1  

(iv) Figure of merit  

Overall score 

 

% and score >1  
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Landscape metrics  

(McGarigal and Marks, 1995)  

Landscape structure and configuration 

Depends on the metric With no reference envelope as to what a bad value is, it is difficult to 

say how ‘out’ the value of the landscape metric is in comparison to 

the observed value.  

 1 
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3 The Similarity Validation Tool (SimiVal)  

3.1 SimiVal Design 

SimiVal requires three maps: (1) the modelled land-cover projections (p) as a categorical 

map at the projected end time point (pt2), and generated from a land-change model 

calibrated between two observed (o) time points (ot0 and ot1); and (2, 3) the observed 

change as two categorical maps for the beginning and end time points of the projection 

period (ot1 and ot2). The tool then creates a fourth random (r) change categorical map at the 

second time point (rt2), that is constrained to duplicate the same amount of land-cover 

change and land-cover transitions that occurred in each category between ot1 and ot2.   For 

each of these categorical maps, SimiVal computes a series of component metrics 

representing different dimensions of land-cover change, classified as non-spatial (quantity) 

and spatial (structural) metrics. Metric scores from ot2 represent the perfect metric scores 

for which the modeller may aim. Metric scores from rt2 represent the random metric scores 

form which the modeller may want to avoid. Metric scores at pt2 represent the metric scores 

that the modeller wishes to evaluate relative to the other two. SimiVal compares these 

component metrics with a linear regression. However, since:  (i) many of these metrics are 

of different orders of magnitude, the metrics are first log transformed as some metrics exert 

undue leverage on the summary regression statistics while others exert very little and; (ii) 

because there is no reference value to determine how wide of the mark a projection is in a 

regression between the observed and projected metrics, the random metric scores are 

scaled relative to the observed scores providing benchmark metric values for the perfect 

and random cases. These benchmark conditions are calculated as the percentage difference 

between the perfect metric scores and the random metric scores and then standardised by 

setting the perfect metric scores to zero. This procedure also provides a ‘bad’ score for a 

boundless metric to compare to the observed. The perfect case is, the regression between 

the standardised observed and standardised random metrics, a flat line, and the random 

case is, a regression of the standardised random metrics against each other, a line at 45 

degrees (Figure 1).  
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Figure 1: The benchmark cases of random, perfect and systematic-bias of land-cover projections. 

Axes are: the percentage difference between the random metrics (or the modelled projection 

metrics) and the observed metrics (diff % predicted) versus the percentage difference between the 

random model metrics and the observed metrics (diff % random). Coefficients for model 

projections will depend how similar they are to a completely random model (slope = 1, p=0), the 

observed ‘perfect’ model, (slope = 0, p=1), or whether the model contains a systematic-bias, 

(slope = -1, p=0). Regression lines that rotate towards the observed regression (dark arrows) 

show increasing similarity to the observed projection. Regression lines that rotate away from the 

observed regression with a slope steeper than -1, are worse than a systematic-bias or with a slope 

steeper than 1, are worse than random (light arrows). Metrics are: N – number of patches, A– 

average-area-to-edge-length ratio, V – variance-average-area-to-edge-length ratio, M – Moran’s 

I, G – Geary’s C, L –distance allocation metric, 1, 5 & 9 persistence Px:x, and 2, 3, 4, 6, 7 & 8 the 

transitions Tx:y. (see section 3.2.1 for full details on Px:x and Tx:y). 
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When the modelled metrics, pt2, are standardised and plot against the standardised random 

metric scores on the same graph, a modeller can now draw rigorous conclusions of how 

close or far away a modelled projection is from either case.  

SimiVal assumes that all modelled projections are similar to the coefficients of the random 

case until proven otherwise. From the regression statistics the test of how similar a 

modelled projection is to a random model can be found with the p-value and the 

coefficients of the simple linear regression line (Eq 1.)  

y = mx + c          (1) 

where m = slope and c = intercept. If we suppose that all models are random until proven 

otherwise, then a perfect fit to the metrics of a random model has a significant relationship 

between the diff % predicted and diff % random values, p-value = 0, with a slope m = 1, and 

intercept c = 0.  By contrast, if the model projection conforms to the null hypothesis it is 

perfect and therefore is not a random model, there would be no significant relationship 

between the  diff % predicted and diff % random values, the p-value would approach 1, and 

the regression would have a slope m = 0, and intercept c = 0. In reality, the model projection 

that is tested will have values between these coefficients, providing a measure of how 

similar the modelled projection is to the random or perfect case. The intercept c, may also 

be ± 0. There can also be cases when the regression has a p-value = 0 but with a slope m = -1 

and an intercept c = 0. Although the p-value suggests a random model, the slope coefficient 

predicts an opposite polarity to the random model metrics, a condition that does not 

conform to the random model or the perfect model. In these cases SimiVal is indicating a 

model projection that incorporates a systematic, non-random bias, and might suggest that 

the land-cover change in the modelled projection is structured and non-random, i.e. the 

model does not produce a random map but cannot fully replicate the processes that led to 

the observed map patterns. To represent the case of systematic-bias, a naïve model, where 

change is simulated adjacent to an obvious predetermining factor (Pontius et al., 2007), 

could be used. However, a naïve model may return many manifestations of patterns when 

limited to a fixed allocation of change,  so we assume the case of a perfect systematic-bias is 

a regression based on metric scores with opposite behaviour to the random metric (Figure 

1). 
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Using the three benchmark cases, SimiVal is able to evaluate, quantify, and visualise a 

modelled projection and help determine if that model is random, perfect or contains a 

systematic-bias. The regression also allows a deeper investigation into the structural 

performance of models, as it is possible to see whether individual metrics are being over-, or 

under-estimated as indicated by their residuals from the linear regression.  SimiVal also 

makes a direct visual comparison between different modelled projections for an inter- and 

intra-model comparison by plotting each modelled projection in a ternary graph 

representing what we refer to as ‘similarity space’. At each extreme, or apex, of the 

‘similarity space’ is the benchmark score for the perfect, random and systematic-bias cases 

(Figure2).  The acceptable level of similarity to the perfect, observed case is at the user’s 

discretion depending on their specific land-cover modelling goals. 
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3.2 SimiVal Component Metrics 

The component metrics in SimiVal have been selected so land-change modellers can identify 

how the structural features and parameterisations within their land-cover change models 

Figure 2: Similarity space.  Cross-hairs mark the benchmark apex for the perfect, random and 

systematic-bias cases. Model predictions that fall inside the ternary graph show how close that 

projection is to one of the three extreme cases, while any that might fall outside the ternary graph 

are either worse than random or are extreme cases with a systematic-bias. Dashed lines represent 

user-defined acceptable thresholds of similarity to the perfect case. Dots represent values for 

models used in the worked example, described in section 4, are all LCM projections (LCM.1-30), 

SML realisation 32, and the SML cumulative probability maps (SML.101-107).  
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influence their different land-cover projections. These metrics are firstly calculated for the 

observed land-cover map at time 2 (ot2), projected map at time 2 (pt2), and random 

allocation at time 2 (rt2). The component metrics represent non-spatial and spatial 

differences between the ot, pt2and rt2, land-cover maps. Non-spatial properties are defined 

here as quantity of change metrics (total quantity for each land-cover, quantity of transition 

between land-covers and the persistence of each land-cover). Spatial metrics are defined 

here as spatial autocorrelation of the overall change, landscape structure, and distance 

allocation.  

3.2.1 Non-Spatial (Quantity) Metrics 

These metrics are computed to evaluate how well the model reproduced how much of each 

land-cover change transitions (between all pairs of classes) actually happened. They are 

calculated by comparing the observed number of land-cover transitions between ot1 and ot2 

with the projected number of transitions between ot1 to pt2. SimiVal categorises, calculates 

and records the number of pixels for all the possible pairwise transitions, including 

persistence (Table 2 and Eq. 2 and Eq. 3), and then sums each transition to give the total 

transition between the two time periods (Eq. 4) 

 

 

 

 

 

 

xt1 ∩ xt2   = Px:x1-n          (2) 

xt1 ∩ yt2   = Tx:y1-n          (3) 

   t2  

 Class 1 2 3 

 1 P1:1 T1:2 T1:3 

t1 2 T2:1 P2:2 T2:3 

 3 T3:1 T3:2 P3:3 

Table 2. Transitions (T) and persistence (P) between three land-covers. 
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Px:x = total units of persistence of land-cover x following the union of the categorical land-

cover maps from t1 and t2 and, Tx:y = the total units of transition from land-cover x to land-

cover y following the union of the categorical land-cover maps from t1 and t2.  

∑ (Tx:y1, Tx:y2 … Tx:yn) = totaltranst1-t2       (4) 

where, totaltranst1-t2 is the total sum of all possible transitions, Tx:y, between t1 and t2. 

3.2.2 Spatial Metrics 

Spatial metrics are calculated from the categorical maps of total observed and total 

projected land-cover change and quantify the ability of land-cover models to replicate the 

spatial structure of overall change in the landscape.  

3.2.2.1Spatial Autocorrelation 

The degree of clustering, randomness and dispersion in the map of transitions is quantified 

using Moran’s I (Gittleman and Kot, 1990) and Geary’s C (Cliff and Ord, 1973) indices. A 

Moran's Index value near +1.0 indicates clustering while an index value near -1.0 indicates 

dispersion. Geary’s C ranges are generally inverse to Moran’s I beginning with a value of 0 

for perfect spatial autocorrelation and with a value of 1 indicating complete absence of 

spatial autocorrelation. Both indices are used as Geary’s C is more sensitive to localised 

clustering of data, whereas Moran’s I has better global sensitivity. These metrics indicate 

how well the model has predicted patchiness and dispersion for all the combined land-cover 

transitions.  

3.2.2.2 Landscape Structure 

Landscape metrics provide statistics describing patterns in the landscape. Many landscape 

metrics are correlated and provide redundant information (Riitters et al., 1995), so for a 

concise account of landscape structure SimiVal uses: number-of-patches (nop), average-

perimeter-to-area-ratio (paAve), and the variance-in-perimeter-to-area-ratio across all 

patches (paVar) with units in metres. These landscape metrics were quantified for the 

observed, random and all projected model runs to determine if the maps had similar 

numbers of isolated land-cover patches (nop), and if the individual patches have similar 

shape or compactness (paAve and paVar), where higher values indicate less compact 
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shapes. The R algorithm we used to define a patch includes adjacent corners (Chang et al., 

2004). 

3.2.2.3 Distance Allocation of Change Pixels 

The SimiVal spatial allocation metric, uses the Wilcoxon rank sum test statistic, W (Crawley, 

2005), to measure and compare how near or far instances of change pixels in the projected 

model and the random model are from the observed change pixels. This is done by 

generating a W score for a perfect match (observed compared to observed) and a W score 

for the difference from observed to each model projection and to the random projection. A 

model projection similar to the observed will have a W score close to the perfect match. A 

random model is unlikely to be the same as the observed and will have a much larger W 

score, whereas a projected model ought to have a W score that falls between the perfect 

match and the random model W scores, assuming the model projection is not worse than 

random. The final W score is reported as a percentage of the perfect W score (Eq 5.) 

(Wproj / (Wperfect) x100        (5) 

4. Data, and Land-Cover Change Models 

4.1 Data Description  

We used an area of township boundaries that intersect, or are inside, the watershed of the 

Plumb Island Ecosystem (PIE) ecological research site, Massachusetts, USA (Figure 3). In 

these townships, housing is replacing forest and knock on effects of the land-cover change 

are thought to be contributing to the depletion of aquifers and increases of algal blooms in 

the coastal bays (Kirkby et al., 2000). 
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Figure 3: Land-cover within the township boundaries that intersect the watersheds draining into 

the Plumb Island Ecosystem (ringed), Massachusetts, USA. 
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Land-cover data at 30m resolution for 1971, 1985 and 1999 was used. There are 21 land-

cover classes in these data sets, which were simplified into the land-cover classes ‘forest’, 

‘built’ and ‘other’ for the modelling.  The ‘other’ class consisted of areas that were 

designated least likely to be converted to ‘built’ such as mines, dedicated open land, 

pasture, cropland, wetlands and water bodies. Two land-cover-change models, with 

contrasting structures, were used to demonstrate SimiVal: the IDRISI Land Change Modeller 

(Clark Labs, 2009), referred herein as LCM, and StocModLCC (Rosa et al., 2013), referred 

herein as SML.  Additional explanatory variables for the models were either calculated from 

the land-cover maps or downloaded (http://pie-lter.ecosystems.mbl.edu/). LCM used 

elevation data, geology, distance-to-1971-built-land and the 1971 land-cover map as 

predictor variables, whereas SML used distance to major settlements, wetland areas, 

protected areas, farmland, distance-to-roads, national landscapes, flood areas, geology and 

planning zones. Each model was calibrated between the years 1971 (t0) and 1985 (t1).  We 

Figure 3: Land-cover within the township boundaries that intersect the watersheds draining into 

the Plumb Island Ecosystem (ringed), Massachusetts, USA. 

http://pie-lter.ecosystems.mbl.edu/
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applied the land-cover models assuming that land-cover-change processes were stationary, 

and projected forward another 14 years to 1999 (t2). SimiVal calculated the metrics, 

regression and plot the coefficients in the ‘similarity space’ described in section 3.  

4.2 Model 1: Land Change Modeller (LCM) 

LCM bases its projection on transition sub-models that use the calculated transition 

potentials between the calibration dates for each land-cover type and chosen explanatory 

variables. Three sub-models were defined: (i) built-gain-from-forest; (ii) other-gain-from-

forest and; (iii) built-gain-from-other, using combinations of elevation, 1971 land-cover, 

surface geology and distance to-1971-built-land as explanatory variables. Transition maps 

that indicate the actual change in land-cover during the calibration period were used as the 

input data to calculate the transition potentials of each of the explanatory variables. The 

transition models then provided transition evidence maps, which were used as the basis for 

the transition matrix calculated by Markov Chain prediction. The transition matrix supplied 

the proportion of change for each land-cover transition, which remained the same for each 

projection. In this instance, two transition models were used: the multiple layer perceptron 

neural network model, and a similarity weighted method.  The model thus provided two 

different internal structures, with three transitions and 15 combinations of explanatory 

variables to produce a total of 30 land-cover projections, labelled as LCM.1 to LCM.30. For 

this exercise the categorical map, or hard classification, calculated from a land allocation 

model built into the IDRISI software was used. This model will tend to select locations where 

the most influential explanatory variables coincide with locations where transition 

potentials are highest, and we may therefore expect land-cover change to occur as small 

contiguous patches, which may be isolated or adjacent to the existing ‘built’ class. 

Considering these model characteristics, we would anticipate that the SimiVal metrics of the 

modelled projections may show a high spatial autocorrelation, consistency in compactness, 

and a similar allocation distance to the observed. Different transition evidence maps will 

vary the location and size of these patches between each projection. 

4.3 Model 2: StocModLCC (SML) 

SML determines that land-cover change occurs when the transition probability of a pixel is 

high enough for the land-cover transition. This probability is calculated from the combined 
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individual posterior probability distributions for each of the explanatory variables, and 

reflects the land-cover condition of surrounding neighbourhood pixels as well as their 

proximity to a combination of other explanatory variables. The posterior probability for each 

parameter is drawn from a likelihood distribution that has been calculated during the 

calibration with Markov Chain Monte Carlo sampling, which themselves have been validated 

for goodness of fit with a 50:50 split between calibration and test data. Three transitions 

were calibrated using the following explanatory variables: (i) forest-to-built-or-other, which 

used distance to roads, protected areas, farms, national landscape areas, flood areas, 

planning zones and geology plus the internal variable, ‘proportion of forest neighbours’; (ii) 

built-to-other-or forest, which used distance to roads, protected areas, farms, geology and 

the internal variable ‘proportion of built neighbours’, and; (iii) other-to-forest-or-built which 

used distance to roads, protected areas, farms, national landscape areas, flooded areas, 

planning zones and the internal variable ‘proportion of other class neighbours’. The built-

back-to-forest transition did not occur in the calibration time period and, therefore could 

not be projected, leaving the following transitions: forest-to-other-or-built, other-to-forest-

or-built (competition, multinomial regression) and, built-back-to-other (no competition, 

binomial regression). The predictions of the three models were simultaneously combined to 

produce the final land-cover-change projection. To allow for uncertainty in the calibration of 

this model there were 100 iterations, or realisations, i.e., 100 equally probable versions, 

labelled SML.1-SML.100, produced by a stochastic process, normally combined to create a 

probability change map (Rosa et al., 2013). However, for SimiVal a hard classification land-

cover map is required, meaning the probability maps emerging from SML needed to be 

categorised. For this study, it was sufficient to cap the highest probability pixels with a 

threshold calculated from the average number of change pixels of the 100 SML realisations, 

giving a map showing pixels of change or no change. This land-cover map is referred to as 

the cumulative probability map. To evaluate the influence of the number of realisations on 

the final cumulative probability map, thresholds were calculated for 4 x25 (SML.1-SML.25, 

SML.26-SML.50, SML.51-SML.75, SML.76-SML.100), 2 x50 (SML.1-SML.50, SML.51-SML. 

100), and 1 x100 (SML.1-SML.100) realisations to create an additional seven cumulative 

probability maps labelled SML.101-SML.107.  SML selects individual pixels for change based 

on a weighted probability ‘coin flip’. Thus contiguity in land-cover change is less likely to 

occur than in LCM and change pixels could be close to or far away from the observed 
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change. Considering the model characteristics, we would anticipate that the SimiVal metrics 

are likely to show, low values of spatial auto correlation, variation in compactness of 

patches, large differences in quantity allocation, and a wide range of variation in distance 

allocation against the observed map. 

5. Results 

5.1 Modelled Spatial Patterns 

The differences between the observed land-cover change and three examples of contrasting 

modelled projections are shown as subsets of the full model area (Fig. 4). Between 1985 

(ot1) and 1999 (ot2), the observed land-cover class transitions (print/online version) were 

mainly the appearance of small parcels and expansion of forest-to-built (medium grey to 

dark grey / green to blue) areas (Fig. 4a & b). The projection 1985 (ot1) to SML.107 (pt2) 

illustrates transitions of both forest-to-built (medium grey to dark grey / green to blue) and 

instances of other-to-forest (light grey to dark grey / beige to blue), and transitions were 

distributed predominantly as individual pixels or small groups of pixels rather than as small 

parcels or expanding parcels (Fig.  4c).The projection from 1985 (ot1) to LCM.18 (pt2) and to 

LCM.24 (pt2) also projected forest-to-built (medium grey to dark grey / green to blue), but 

did not replicate the 1999 (ot2) patterns, allocating different quantities in the same and 

different places to 1999 (ot2). The projection of change in LCM.18 (pt2) had a more parcel like 

appearance of built (dark grey / blue) areas (Fig 4d) whereas LCM.24 (pt2) tended to 

systematically expand existing built (dark grey / blue) areas (Fig 4e). At this particular 

location projection LCM.18 (pt2) showed a slight propensity to project more land-cover 

transitions between other-to-built (light grey to dark grey / beige to blue), than did LCM.24 

(pt2).   
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(a) 

(d) 

(c) 

(b) 

Figure 4, Land-cover maps for, (a) 1985, (b) 1999, (c) SML cumulative probability map 107, (d) 

LCM projection 18, (e) LCM projection 24. The arrow between (a) and (b) signifies observed 

change. Land-cover classes are (grayscale/ colour), forest (medium grey/green), built (dark 

grey/blue), other (light grey/beige). Pixels are 30m by 30m. 

1985 (ot1) 

1999 (ot2) 

LCM.18 (pt2) 

SML.107 (pt2) 

LCM.24 (pt2) 

(e) 
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5.2 Metric Summary 

A summary of the metrics for the observed, random, LCM and SML model projections are 

shown in Table 3. For the non-spatial metrics (quantity, Tx:y, Px:x), the random model used 

the same total quantity of change as the observed change, but over allocated the change 

pixels across the transitions for the least likely transitions (e.g. increases in T1:3 (built-to-

(a) 

(d) 

(c) 

(b) 

Figure 4, Land-cover maps for, (a) 1985, (b) 1999, (c) SML cumulative probability map 107, (d) 

LCM projection 18, (e) LCM projection 24. The arrow between (a) and (b) signifies observed 

change. Land-cover classes are (grayscale/colour), forest (medium grey/green), built (dark 

grey/blue), other (light grey/beige). Pixels are 30m by 30m. 

1985 (ot1) 

1999 (ot2) 

LCM.18 (pt2) 

SML.107 (pt2) 

LCM.24 (pt2) 

(e) 



LCM metrics 

27 
 

other), T2:1 (built-to-forest) and T2:3 (forest-to-other)), but under allocated change to the 

more likely transition (e.g. increases in T1:2 (forest-to-built)). The mean scores of the two 

models showed that both LCM and SML projected a lower quantity of change pixels than 

was observed.  

Table 3: Summary of the metrics for the observed (n=1), random (n=1), LCM (n=30), and 

SML (n=100) projections and for the selected individual projections LCM.18, LCM.24 and 

SML.107. Quantity – total of quantity of change of all land-cover transitions, T – refers to 

transition and P – refers to persistence between t1 and t2. nop – number of patches, paAve – 

average area to edge length ratio, paVar – variance average area to edge length ratio, M – 

Morans’ I, G – Gearys’ C, Alloc – distance allocation metric. Units are in pixels. 

Metric observed random 
LCM 

(mean) 
LCM 
(SD) 

LCM 
18 

LCM 
24 

SML 
(mean) 

SML  
(SD) 

SML 
107 

Quantity 95361 95361 72605 0 72605 72605 58750 327 49993 

P1:1 489425 503063 494172 0 494172 494172 506723 265.53 514833 

T1:2 47260 20663 41521 0 41521 41521 36754 268.56 28710 

T1:3 7497 20456 8489 0 8489 8489 704.5 55.67 639 

T2:1 121 15507 0 0 0 0 0 0 0 

P2:2 409261 379981 411035 0 411035 411035 410754 21.16 410857 

T2:3 1653 15547 0 0 0 0 281 21.16 178 

T3:1 13935 11544 0 0 0 0 22 11.04 1 

T3:2 24895 11644 22595 0 22595 22595 20988 203.66 20465 

P3:3 266094 281736 282329 0 282329 282329 283914 203.85 284458 

nop 2917.00 68806.00 3293.89 2435.57 3774 2882 34843 166 10823 

paAv 0.05185 0.12806 0.08354 0.02052 0.089513 0.092635 0.125713 0.000083 0.12256 

paVar 0.000531 0.000156 0.000918 0.000387 0.001344 0.001299 0.000223 0.000002 0.00047 

M 0.73 0.11 0.63 0.20 0.715671 0.772431 0.180873 0.000835 0.53785 

G 0.30 0.99 0.41 0.23 0.31737 0.252418 0.919792 0.000937 0.51841 

Alloc 100.00 183.29 150.58 14.34 158.02 154.06 140.82 0.38 128.62 

 

As expected for the dominant transitions during each model calibration, change pixels were 

allocated to T1:2 (forest-to-built) and T3:2 (other-to-built), but the models could not project 

T2:1 (built-to-forest). The remaining transitions either had low numbers of pixels or no 

pixels at all. The predicted quantity allocation between the two models also differed (Table 

3). For LCM there was no variation around the mean, and the mean values were the same in 

each individual projection because the quantity of change for each transition was fixed by 

the transition matrix. By contrast, SML had variation around the mean quantity allocation 
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because, rather than impose a fixed change quota, a change pixel was determined by ‘coin 

flip’. The transitions in the cumulative probability map, LCM.107, slightly underestimated 

the mean SML projection because some of the high probability values of the combined 

realisations were excluded during the probability capping.  

For the spatial metrics scores (nop, paAve, paVar, M, G and alloc) there was a wide variation 

between the observed and random models. This was primarily due to larger contiguous 

change patches occurring in the observed maps, whereas the random projected allocated 

change to many isolated pixels and small patches. As anticipated, the LCM projections 

predicted reasonably high levels of spatial autocorrelation (M & G), whereas SML predicted 

much lower levels. There were fewer patches (nop) predicted in LCM than SML, and the 

compactness of the patches in LCM was closer to the observed than to the random, 

whereas the compactness of patches in the SML projections was more similar to the random 

than to the observed. There was more variability in compactness from the LCM than SML 

projections. The variability occurred because the SML patches were consistently small 

groups of pixels that did not form large contiguous areas of change, whereas the range of 

patch sizes in the LCM projections was much larger. The allocation distance was poorer in 

the LCM projections than the SML projections, probably because the more widely 

distributed selection of change pixels in SML ensures those pixels can end up being 

anywhere from quite close to quite far from the observed change, whereas with the LCM 

projections contiguous clusters of many pixels may collectively be far away meaning that 

each component pixel in the change patch has a similar distance to the observed change. 

Overall, the mean spatial metric values for LCM were closer to the observed than to the 

random model, whereas the opposite was true for the SML realisations. However, the SML 

cumulative probability map (SML.107) was less like the random model than the individual 

100 realisations, demonstrating that the cumulative probability map encouraged clustering 

of pixels with the effect of improving the overall spatial predictions of SML.  

5.3 SimiVal Statistics 

Typical examples of the SimiVal regression illustrate the relative similarity of the validation 

metrics for the LCM and SML projections to the perfect, random, and systematic-bias cases 

(Fig. 5). The metrics of one SML realisation, SML.32, scored very close to the random case 
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metrics with a slope 0.68, intercept -14.95 and p-value <0.01 (Fig 5a). This was largely due to 

the near-random selection of individual pixels that did not replicate the observed patterns 

of change well. However, combining all the 100 realisations into the cumulative probability 

map (SML.107) improved this situation, changing the regression coefficients to a moderate 

slope 0.34, intercept -11.48 and p-value 0.09 (Fig. 5b). For LCM.18 many of the metrics had 

values similar to those of the observed, perfect case with a shallow regression slope of 0.01, 

intercept of -76.79 and p-value of 0.97 (Fig 5c), reflecting the ability of the LCM model to 

create patches of contiguous pixels that were more similar to the observed map. By contrast 

some metrics in LCM.24 exhibited a tendency to move towards the systematic-bias, 

resulting in a negative slope -0.12, intercept -1.90 and p-value of 0.60 (Fig. 5d). In this case 

the LCM model was concentrating change in a few places rather than across the landscape. 

The remaining projections showed variations of the themes in Fig. 5 and are summarised in 

Table S1.  

The visualisation of the p-value and slope scores provides an inter- and intra-comparison of 

all the modelled projections and an instant visual evaluation and understanding of the 

relative similarity of all projections to the perfect, random, and systematic-bias cases (Fig. 

2). This is much simpler than the table of values (Table S1) and gives a visual summary of the 

individual regressions (e.g. Fig. 5). Model projections with the shallowest gradients, LCM 

runs 4, 11, 18, 24 and 26 had the highest p-values and were most similar to the observed, 

perfect model. All other projections had greater positive or negative slopes, in particular a 

group of LCM projections with negative gradients of <-0.2 and thereby exhibiting 

systematic-bias whereas the SML projections tended to have positive slopes > 0.3 and 

thereby exhibiting a tendency to the random case.  Accordingly the p-values decrease to the 

base of the ternary plot as the modelled projections become less similar to the observed, 

perfect case. 
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6. Discussion 

To validate land-cover maps from LCCMs we have built a tool in R code that includes a set of 

metrics covering the major dimensions of land-cover change maps: quantity allocation; 

distance allocation and structural characteristics. When these metrics are combined and 

analysed collectively the similarity between different model projections can be visualised. 

Figure 5. Linear regression of SimiVal metrics for four model projections (a) SML.32 (b) 

SML.107, (c) LCM.18, (d) LCM.24. Legend symbols and lines are described in Figure 2.  
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The visualisation provides an instant recognition of how similar or dissimilar models can be 

to the three cases of a perfect, random, or systematic-bias. This is useful for: (i) validation of 

a single model projection; (ii) validation of multiple projections from for an intra- or inter-

model comparison and; (iii) identifying how different model parameterisations influence the 

component metrics. This approach encourages consistent validation to evaluate the 

outcomes of one or many projections avoiding ad hoc choices of metrics and arbitrary 

decisions that can highlight specific objectives and model features. 

The use of ‘similarity space’ (Fig. 2), avoids the first-past-the-post vision that validation 

tends to invoke, and instead provides a measure of similarity for each projection depending 

on how close the projection is to each of three benchmark apices. A perfect model will sit 

close to the perfect apex, calculated from what was actually observed to occur, and 

indicates a parameterisation of land-cover processes that leads to the same outcome as 

reality. A projection that plots towards the centre of similarity space is becoming more 

dissimilar to the perfect, and correspondingly exhibiting greater similarity to the random or 

systematic-bias cases.  Additionally, when the projection is positioned towards either the 

random or systematic-bias apices, the modelled run can be judged as being parameterized 

in such a way that the land-cover change processes represented in the model are not 

realistic and that the resultant outcome is not accurately reflecting reality. Exactly where 

the boundary of realism sits in ‘similarity space’ may well be a decision for the individual 

analyst who ultimately judges the realism of the modelled land-cover projections and, how 

good a model needs to be before it is acceptable for a particular purpose. By drawing 

threshold lines across ‘similarity space’, the user can add certainty to this subjective task, 

but the location of the thresholds will likely be user-specific (Fig. 2).  

The wide range of dimensions that are included in SimiVal is an advance on existing 

validation procedures.  In addition to the metrics which are highly informative  with respect 

to allocation (e.g. Costanza, 1989; Hagen, 2003; Almieda, 2008; Pontius et al., 2008; Pontius 

et al., 2011), we paid particular attention to evaluation of land-cover maps including metrics 

of spatial correlation and landscape structure, and therefore provide a more diverse pool of 

metrics. Other authors have used metrics of landscape structure (e.g. Soares-Filho et al., 

2002; Dale et al., 1993), and this added dimension is particularly useful to models that 

specifically drive change via landscape structure, (e.g. DINAMICA  Soares-Filho et al., 2002)), 
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as opposed driving change via quantity and probability (e.g. LCM and SML). Alarmingly, we 

found that when using quantity metrics alone it was difficult to distinguish between 

different projections from the same model (Table 3), and in fact was impossible for LCM. 

This represents a critical problem, as each LCM projection had a different modelled spatial 

pattern of change (Fig. 4). Thus the addition of spatial metrics is useful in differentiating and 

understanding these projections. For example, although LCM.18 (pt2) did not spatially 

allocate change in the right places, the model was better at predicting the structural 

features of land-cover change than LCM.24 (pt2).  

 Although SimiVal is not the ultimate answer to validation, it is a step towards consistency. 

The method avoids inadvertently imbalanced assessments and contributes to the need for 

improved land-cover model validation (Brown et al., 2013), reducing the difficulties 

identified during inter-model comparison (Rosa et al., 2014). In our illustration of SimiVal we 

found models varied greatly in their ability to recreate observed change, and that models 

made erroneous predictions in very different ways. Using the model positions in ‘similarity 

space’ we can explicitly quantify on: (i) parameterisations that produced acceptable land-

cover maps and; (ii) parameterisations that produced inappropriate maps. This approach 

could be used for explicit model comparison, although results need to be interpreted with 

caution. For example, we found that some parameterisations of LCM performed 

exceptionally well in predicting observed patterns of change, whereas SML projections did 

not generally perform so well. However, it should be noted that SML was explicitly designed 

to model deforestation at large spatial scales (Rosa et al. 2013), as opposed to simulating 

secluded urban parcels over relatively small spatial scales as we used in this exercise. A strict 

comparison of model performance in this single, limited case might tell us what modelling 

approach is best suited to projecting land-cover change in this type of situation, but tells us 

nothing about the relative strengths and weaknesses of the two approaches in other 

situations.  Perhaps, then, these models were unfairly compared in this exercise, but our 

explicit objective here was to evaluate the versatility of SimiVal and not to make generalised 

statements about the relative performance of different modelling platforms.  

Nonetheless, our worked example of applying SimiVal does demonstrate how the tool can 

be used to assist in the selection of the best suited parameterisation for exploratory studies 

and future projection in a given situation. Of course, one has to assume land-cover change 
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processes are stationary and, that the credibility of the final landscape projection and the 

representation of the land-cover change processes have been considered to be appropriate. 

If these are reasonable assumptions, the position of each parameterisation in similarity 

space is useful information for trying to improve models, or during exploratory modelling 

when an analyst is trying to understand parameterisations that lead to specific land-cover 

outcomes. Using similarity space in this way is therefore useful for understanding and 

improving predictive models where validation has previously been considered to have 

limited value (Deadman et al., 2004). With our exercise, for example, we were able to use 

visual inspection of Fig. 2 to identify projections with systematic-bias, and on further 

examination of those parameterisations we found that they represented malfunctioning 

models that produced improbable landscape structures (e.g. one model predicted stripes of 

change across the landscape). Such information, along with more detailed examination of 

the SimiVal regression output (Fig. 5)  helps guide the next round of model improvements, 

an approach suggested by Pontius and Millones (2011). If an analyst was trying to exactly 

replicate the observed land-cover map, in depth analysis of the regression plots will give 

clues to where a particular model parameterisation requires attention. As a specific 

example, projection LCM.24 had problems with allocation in the T3:1, T2:3 and T2:1 

transitions, and difficulty replicating the structural dimensions, paAve and paVar. Such 

information could tell an analyst two things that will help improve future parameterisations: 

(i) that there was a problem because the model was not calibrated with these transitions; 

and (ii) that the model does not re-create landscape structure well and the simulation of 

patch size and clustering requires attention.  

The applications of SimiVal reach into many disciplines and the information that each 

discipline seeks is often quite different. For example, an economist or policy analyst may be 

interested in different outcomes to infer how a particular parameterisation influenced 

specific policies or market mechanisms, whereas an ecologist or spatial analyst may be 

interested in landscape structure for conservation studies or development planning. 

Whatever the purpose of the LCCM,  using a similarity tool that provides a comprehensive 

validation, can rigorously guide a user’s choice of model and their interpretation of land-

cover projections. 
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7. Conclusion 

Different parameterisations of the same land-cover model, and different land-cover 

modelling approaches can produce a wide range of land-change predictions from the same 

scenario and data.  Using a limited validation that focusses solely on specific dimensions of 

change, such as quantity allocation, it is not always possible to distinguish how similar land-

cover change projections are to other land-change projections or to the actual, observed 

land-cover change. More dimensions need to be considered, and in particular metrics that 

consider landscape structure. Moreover, it is also difficult to estimate how dissimilar 

particular model projections are unless they are compared to values from a known 

benchmark condition. These benchmark conditions require the rescaling of all metrics 

relative to the observed values, and the subsequent regression plots provide coefficients to 

test the similarity of a modelled projection. The most informative coefficients of the 

regression are the p-value and slope coefficient, which when plot simultaneously in a 

ternary graph of ‘similarity space’, indicate how modelled projections vary with different 

model parameterisations, relative to the cases of perfect, random, and systematic-bias. This 

approach, delivered as a program SimiVal, provides a consistent method for land-cover map 

validation, improving on the selective procedures widely practiced at present.  
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