4,794 research outputs found

    Using bacterial biomarkers to identify early indicators of cystic fibrosis pulmonary exacerbation onset

    Get PDF
    Acute periods of pulmonary exacerbation are the single most important cause of morbidity in cystic fibrosis patients, and may be associated with a loss of lung function. Intervening prior to the onset of a substantially increased inflammatory response may limit the associated damage to the airways. While a number of biomarker assays based on inflammatory markers have been developed, providing useful and important measures of disease during these periods, such factors are typically only elevated once the process of exacerbation has been initiated. Identifying biomarkers that can predict the onset of pulmonary exacerbation at an early stage would provide an opportunity to intervene before the establishment of a substantial immune response, with major implications for the advancement of cystic fibrosis care. The precise triggers of pulmonary exacerbation remain to be determined; however, the majority of models relate to the activity of microbes present in the patient's lower airways of cystic fibrosis. Advances in diagnostic microbiology now allow for the examination of these complex systems at a level likely to identify factors on which biomarker assays can be based. In this article, we discuss key considerations in the design and testing of assays that could predict pulmonary exacerbations

    Improved description of 34,36,46^{34,36,46}Ar(p,d) transfer reactions

    Full text link
    An improved description of single neutron stripping from 34,36,46^{34,36,46}Ar beams at 33 MeV/nucleon by a hydrogen target is presented and the dependence on the neutron-proton asymmetry of the spectroscopic factors is further investigated. A finite range adiabatic model is used in the analysis and compared to previous zero range and local energy approximations. Full three-body Faddeev calculations are performed to estimate the error in the reaction theory. In addition, errors from the optical potentials are also evaluated. From our new spectroscopic factors extracted from transfer, it is possible to corroborate the neutron-proton asymmetry dependence reported from knockout measurements.Comment: 7 pages, 3 figure

    Compilability of Abduction

    Full text link
    Abduction is one of the most important forms of reasoning; it has been successfully applied to several practical problems such as diagnosis. In this paper we investigate whether the computational complexity of abduction can be reduced by an appropriate use of preprocessing. This is motivated by the fact that part of the data of the problem (namely, the set of all possible assumptions and the theory relating assumptions and manifestations) are often known before the rest of the problem. In this paper, we show some complexity results about abduction when compilation is allowed

    The capacity to act in trans varies among drosophila enhancers

    Get PDF
    The interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans. Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans. Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans. However, the degree to which trans-action was supported varied greatly between enhancers. Quantitative analysis of enhancer activity supports a model wherein an enhancer’s strength of transcriptional activation is a major determinant of its ability to act in trans, but that additional factors may also contribute to an enhancer’s trans-activity. In sum, our data suggest that a capacity to activate a promoter on a paired chromosome is common among Drosophila enhancers

    Direct Formation of Supermassive Black Holes via Multi-Scale Gas Inflows in Galaxy Mergers

    Full text link
    Observations of distant bright quasars suggest that billion solar mass supermassive black holes (SMBHs) were already in place less than a billion years after the Big Bang. Models in which light black hole seeds form by the collapse of primordial metal-free stars cannot explain their rapid appearance due to inefficient gas accretion. Alternatively, these black holes may form by direct collapse of gas at the center of protogalaxies. However, this requires metal-free gas that does not cool efficiently and thus is not turned into stars, in contrast with the rapid metal enrichment of protogalaxies. Here we use a numerical simulation to show that mergers between massive protogalaxies naturally produce the required central gas accumulation with no need to suppress star formation. Merger-driven gas inflows produce an unstable, massive nuclear gas disk. Within the disk a second gas inflow accumulates more than 100 million solar masses of gas in a sub-parsec scale cloud in one hundred thousand years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can grow to a billion solar masses in less than a billion years by accreting gas from the surrounding disk.Comment: 26 pages, 4 Figures, submitted to Nature (includes Supplementary Information

    Same-Day Physical Therapy Consults in an Outpatient Neuromuscular Disease Physician Clinic

    Get PDF
    Background: Team-based care has been shown to offer more comprehensive benefits to patients when compared to standard physician-based care alone in clinics for chronic conditions. However, apart from grant-funded multidisciplinary clinics, there are no reports on the usage of same-day physical therapy (PT) consults within a daily outpatient neuromuscular disease (NMD) physician clinic. Objective: To determine the impact of same-day PT consults at the University of Utah’s outpatient Clinical Neurosciences Center. Design: A qualitative assessment and survey of patient satisfaction. Methods: An eight question Health Insurance Portability and Accountability Act-compliant patient satisfaction survey using a 5-point Likert scale was administered. Demographic data and Press-Ganey Provider Satisfaction surveys were retrospectively collected from electronic medical records for patients receiving same-day PT encounters in the neuromuscular division over 1 year. Results: Mean (standard deviation) age was 54.22 (19.81) years for 134 patient encounters, median age was 60 years, with 76 male (57%) and 58 female (43%) patients. Mean Likert score for 61 self-reported patient satisfaction surveys for same-day PT consults was 4.87 (97.4%). Press-Ganey Provider Satisfaction scores improved from 89.9% (N=287) for the year prior to 90.8% (N=320) for the corresponding year (P=0.427). A total of 46 (75.4%) patients have either never before received PT care or never before received PT care for their NMD, 67.4% of whom were male. Conclusion: Same-day PT consults in an outpatient NMD physician clinic demonstrated excellent patient satisfaction and improved access to specialty care. This model could potentially be implemented in other academic medical centers to improve access to rehabilitation services for patients with NMD

    Exploring the conditions required to form giant planets via gravitational instability in massive protoplanetary discs

    Full text link
    We carry out global three-dimensional radiation hydrodynamical simulations of self-gravitating accretion discs to determine if, and under what conditions, a disc may fragment to form giant planets. We explore the parameter space (in terms of the disc opacity, temperature and size) and include the effect of stellar irradiation. We find that the disc opacity plays a vital role in determining whether a disc fragments. Specifically, opacities that are smaller than interstellar Rosseland mean values promote fragmentation (even at small radii, R < 25AU) since low opacities allow a disc to cool quickly. This may occur if a disc has a low metallicity or if grain growth has occurred. With specific reference to the HR 8799 planetary system, given its star is metal-poor, our results suggest that the formation of its imaged planetary system could potentially have occurred by gravitational instability. We also find that the presence of stellar irradiation generally acts to inhibit fragmentation (since the discs can only cool to the temperature defined by stellar irradiation). However, fragmentation may occur if the irradiation is sufficiently weak that it allows the disc to attain a low Toomre stability parameter.Comment: Accepted for publication by MNRAS. 11 pages, 12 figures

    QED Calculation of E1M1 and E1E2 Transition Probabilities in One-Electron Ions with Arbitrary Nuclear Charge

    Full text link
    The quantum electrodynamical theory of the two-photon transitions in hydrogenlike ions is presented. The emission probability for 2s1/2 -> 2E1+1s1/2 transitions is calculated and compared to the results of the previous calculations. The emission probabilities 2p12 -> E1E2+1s1/2 and 2p1/2 -> E1M1+1s1/2 are also calculated for the nuclear charge Z values 1-100. This is the first calculation of the two latter probabilities. The results are given in two different gauges.Comment: 14 pages, 4 tables, 1 figur

    Abundances and rotational temperatures of the C2 interstellar molecule towards six reddened early-type stars

    Full text link
    Using high-resolution (~85000) and high signal-to-noise ratio (~200) optical spectra acquired with the European Southern Observatory Ultraviolet and Visual Echelle Spectrograph, we have determined the interstellar column densities of C2 for six Galactic lines of sight with E(B- V) ranging from 0.33 to 1.03. For our purposes, we identified and measured absorption lines belonging to the (1, 0), (2, 0) and (3, 0) Phillips bands A1{\Pi}u-X1{\Sigma}+g. We report on the identification of a few lines of the C2 (4, 0) Phillips system towards HD 147889. The curve-of-growth method is applied to the equivalent widths to determine the column densities of the individual rotational levels of C2. The excitation temperature is extracted from the rotational diagrams. The physical parameters of the intervening molecular clouds (e.g. gas kinetic temperatures and densities of collision partners) were estimated by comparison with the theoretical model of excitation of C2.Comment: 11 pages, 3 figures, MNRAS 201

    Paper Session II-B - High Efficiency Hyperspectral Imager for the Terrestrial and Atmospheric Multispectral Explorer

    Get PDF
    The Terrestrial and Atmospheric MultiSpectral Explorer1 (TAMSE) is a Space Shuttle Small Self- Contained Payload “Get-Away Special” (GAS) project, led by Principal Investigator Rolando Branly, and including remote sensing and microgravity experiments from Florida Space Institute member schools. One of these experiments is the High-Efficiency HyperSpectral Imager (HEHSI). The HEHSI project will provide a low-cost spaceflight demonstration of a novel type of imaging spectrometer with exceptional light gathering ability. HEHSI is also a demonstration of what can be achieved in space with a modest budget: 15KfromtheFloridaSpaceGrantConsortium(FSGC)and 15K from the Florida Space Grant Consortium (FSGC) and 10K from the Florida Space Institute (FSI). Education and workforce development are important goals of the project, with all of the mechanical, electronics, and software design and testing being carried out by an interdisciplinary team of FSI students. These six students, who are about to graduate with bachelor’s degrees in engineering (three computer, one electrical, and two aerospace), have worked on the project and received course credit for two semesters. The matching funds from FSI support the involvement of the mentor for the HEHSI experiment, Glenn Sellar, who is also responsible for the optical design. Environmental testing (thermal and vibration) will be carried out by the students at KSC’s Physical Testing Laboratory, under a cooperative Space Act Agreement. As this instrument is the first remote sensing payload constructed in Florida (to the authors knowledge), it also serves as a seed for diversification of the space industry in Florida. An overview of the project is presented in this paper, including the science objectives, and the optical, mechanical, electrical, and software designs
    corecore