41 research outputs found

    Induction and repression effects on CYP and transporter protein abundance by azole mixture uptake in rat liver

    Get PDF
    Detection of mixture effects is a major challenge in current experimental and regulatory toxicology. Robust markers are needed that are easy to quantify and responsive to chemical stressors in a broad dose range. Several hepatic enzymes and proteins related to drug metabolism like cytochrome-P-450 (CYP) enzymes and transporters have been shown to be responsive to pesticide active substances in a broad dose range and are therefore good candidates to be used as markers for mixture toxicity. Even though they can be well quantified at the mRNA level, quantification on the protein level is challenging because most of these proteins are membrane bound. Here we report the development of mass spectrometry-based assays using triple-x-proteomics (TXP) antibodies in combination with targeted selected ion monitoring (tSIM) to quantify changes of protein levels due to exposure to mixtures of pesticide active substances. Our results indicate that changes on the protein level of CYP1A1, ABCB2, ABCC3 are in line with observations on the mRNA and enzyme activity level and are indicative of mixture effects. Therefore, the tests are promising to reveal effects by chemical mixture effects in toxicological studies in rats

    The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner

    Get PDF
    All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38’s role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation

    Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement

    Get PDF
    Endocrine disruption is a specific form of toxicity, where natural and/or anthropogenic chemicals, known as "endocrine disruptors" (EDs), trigger adverse health effects by disrupting the endogenous hormone system. There is need to harmonize guidance on the regulation of EDs, but this has been hampered by what appeared as a lack of consensus among scientists. This publication provides summary information about a consensus reached by a group of world-leading scientists that can serve as the basis for the development of ED criteria in relevant EU legislation. Twenty-three international scientists from different disciplines discussed principles and open questions on ED identification as outlined in a draft consensus paper at an expert meeting hosted by the German Federal Institute for Risk Assessment (BfR) in Berlin, Germany on 11-12 April 2016. Participants reached a consensus regarding scientific principles for the identification of EDs. The paper discusses the consensus reached on background, definition of an ED and related concepts, sources of uncertainty, scientific principles important for ED identification, and research needs. It highlights the difficulty in retrospectively reconstructing ED exposure, insufficient range of validated test systems for EDs, and some issues impacting on the evaluation of the risk from EDs, such as non-monotonic dose-response and thresholds, modes of action, and exposure assessment. This report provides the consensus statement on EDs agreed among all participating scientists. The meeting facilitated a productive debate and reduced a number of differences in views. It is expected that the consensus reached will serve as an important basis for the development of regulatory ED criteria

    Development of new approach methods for the identification and characterization of endocrine metabolic disruptors-a PARC project

    Get PDF
    In past times, the analysis of endocrine disrupting properties of chemicals has mainly been focused on (anti-)estrogenic or (anti-)androgenic properties, as well as on aspects of steroidogenesis and the modulation of thyroid signaling. More recently, disruption of energy metabolism and related signaling pathways by exogenous substances, so-called metabolism-disrupting chemicals (MDCs) have come into focus. While general effects such as body and organ weight changes are routinely monitored in animal studies, there is a clear lack of mechanistic test systems to determine and characterize the metabolism-disrupting potential of chemicals. In order to contribute to filling this gap, one of the project within EU-funded Partnership for the Assessment of Risks of Chemicals (PARC) aims at developing novel in vitro methods for the detection of endocrine metabolic disruptors. Efforts will comprise projects related to specific signaling pathways, for example, involving mTOR or xenobiotic-sensing nuclear receptors, studies on hepatocytes, adipocytes and pancreatic beta cells covering metabolic and morphological endpoints, as well as metabolism-related zebrafish-based tests as an alternative to classic rodent bioassays. This paper provides an overview of the approaches and methods of these PARC projects and how this will contribute to the improvement of the toxicological toolbox to identify substances with endocrine disrupting properties and to decipher their mechanisms of action

    Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations

    Get PDF
    While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA

    Mixture prioritization and testing: the importance of toxicokinetics

    No full text
    2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328; CAS: 25973-55-1) is an ultraviolet light (UV) absorber which belongs to the class of hydroxy phenol benzotriazoles. Therefore, UV 328 is added to plastics and other polymers due to its photostability to prevent discoloration and prolong product stability which may result in an exposure of consumers. However, information about the toxic effects on humans and the human metabolism are still lacking. In the present study, human metabolism pathways of UV 328 and its elimination kinetics were explored. For that purpose, three healthy volunteers were orally exposed to a single dose of 0.3 mg UV 328/kg bodyweight. UV 328 and its metabolites were investigated in blood and urine samples collected until 48 and 72 h after exposure, respectively. Thereby, previously published analytical procedures were applied for the sample analysis using dispersive liquid-liquid microextraction and subsequent measurement via gas chromatography coupled to tandem mass spectrometry with advanced electron ionization. UV 328 was found to be oxidized at its alkyl side chains leading to the formation of hydroxy and/or oxo function with maximum blood concentrations at 8-10 h after exposure for UV 328-6/3-OH, UV 328-4/3-OH and UV 328-4/3-CO. In contrast, a plateau for UV 328-4/3-CO-6/3-OH levels was reached around 10 h post-dosage. The highest blood levels were found for native UV 328 at 8 h after ingestion. Furthermore, biphasic elimination kinetics in blood were revealed for almost all detected metabolites. UV 328 and its metabolites did not occur in blood as conjugates. The renal elimination kinetics were very similar with the kinetics in blood. However, the prominence of the metabolites in urine was somewhat different compared to blood. In contrast, mostly conjugated metabolites occurred for renal elimination. In urine, UV 328-4/3-CO-6/3-OH was found to be the most dominant urinary biomarker followed by UV 328-6/3-OH and UV 328-4/3-OH. In total, approximately 0.1% of the orally administered dose was recovered in urine within 72 h. Although high levels of UV 328 in blood proved good resorption and high systemic availability of the substance in the human body, the urine results revealed a rather low quantitative metabolism and urinary excretion rate. Consequently, biliary excretion as part of the enterohepatic cycle and elimination via feces are assumed to be the preferred pathways instead of renal elimination

    The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity

    No full text
    Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed

    The use of NAMs and omics data in risk assessment

    No full text
    The animal-centric approach so far predominantly employed in risk assessment has been questioned in recent years due to a number of shortcomings regarding performance, consistency, transferability of results, sustainability, costs and ethical reasons. Alternatives to animal testing, collectively termed NAMs, may have the potential to deliver sound, cost-effective, prompt and reliable information, but their regulatory acceptance has not been established yet. The main reasons behind this are mostly related to actual methodological obstacles, with particular reference to addressing complex endpoints such as repeated-dose toxicity, the issue of translating the concept of adversity to NAMs, and doubts of stakeholders about the level of chemical safety ensured by NAMs. With the aim of providing an updated view on major conceptual and methodological developments in the field of toxicology, a symposium and a workshop were organised by the German Federal Institute for Risk Assessment (Bundesinstitut fĂŒr Risikobewertung, BfR) and Helmholtz Centre for Environmental Research on 15–17 November 2021 in Berlin. The conference, entitled ‘Challenges in Public Health Protection in the 21st Century: New Methods, Omics and Novel Concepts in Toxicology’ brought together eminent scientists with representatives from industry and regulatory authorities. The organisation, day-to-day operations and the reporting of the event main outcomes in a position paper were the main focus of the present EFSA EU-FORA work programme. Tasks pertaining to ‘The use of NAMs and omics data in risk assessment’ were implemented under the shared supervision of units ‘Testing and Assessment Strategies Pesticides’ and ‘Effect-based Analytics and Toxicogenomics’ of the German Federal Institute for Risk Assessment.3s

    More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells

    No full text
    The liver is constantly exposed to mixtures of hepatotoxic compounds, such as food contaminants and pesticides. Dose addition is regularly assumed for mixtures in risk assessment, which however might not be sufficiently protective in case of synergistic effects. Especially the prediction of combination effects of substances which do not share a common adverse outcome (AO) might be problematic. In this study, the focus was on the endpoint liver triglyceride accumulation in vitro, an indicator of hepatic fatty acid changes. The hepatotoxic compounds difenoconazole, propiconazole and tebuconazole were chosen which cause hepatic fatty acid changes in vivo, whereas fludioxonil was chosen as a hepatotoxic substance not causing fatty acid changes. Triglyceride accumulation was analyzed for combinations of steatotic and non-steatotic pesticides in human HepaRG hepatocarcinoma cells. Investigations revealed a potentiation of triglyceride accumulation by mixtures of the steatotic compounds with the non-steatotic fludioxonil, as compared to the single compounds. Mathematical modeling of combination effects indicated more than additive effects for the tested combinations if the method by Chou was applied, and a decrease in E
    corecore