33 research outputs found

    Influence of physical capacities of males with transtibial amputation on gait adjustments on sloped surfaces

    Get PDF
    The aim of the study was to investigate how kinematic and kinetic adjustments between level and slope locomotion of persons with transtibial amputation are related to their individual muscular and functional capacities. A quantified gait analysis was conducted on flat and slope surfaces for seven patients with transtibial amputation and a control group of eight subjects to obtain biomechanical parameters. In addition, maximal isometric muscular strength (knee and hip extensors) and functional scores were measured. The results of this study showed that most of the persons with transtibial amputation could adapt to ramp ascent either by increasing ankle, knee, and hip flexion angles of the residual limb and/or by recruiting their hip extensors to guarantee enough hip extension power during early stance. Besides, 6-minute walk test score was shown to be a good predictor of adaptation capacities to slope ascent. In ramp descent, the increase of knee flexion moment was correlated with knee extensor strength and residual-limb length. However, no correlation was observed with functional parameters. Results show that the walking strategy adopted by persons with transtibial amputation to negotiate ramp locomotion mainly depends on their muscular capacities. Therefore, muscular strengthening should be a priority during rehabilitation.This material was based on work supported by the French National Research Agency (grant ANR-2010-TECS-020)

    Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry?

    Get PDF
    Background: Amputee gait is known to be asymmetrical, especially during loading of the lower limb. Monitoring asymmetry could be useful in quantifying patient performance during rehabilitation. Wearable insoles can provide normal ground reaction force asymmetry in real-life conditions. Objectives: To characterize the validity of Loadsol® insoles versus force plates in quantifying normal ground reaction force and gait asymmetry. To determine the influence walking speed has on loading asymmetry in transfemoral amputees. Study design: This is a prospective study. Methods: Six transfemoral amputees, wearing Loadsol® insoles, walked at three self-selected speeds on force plates. Validity was assessed by comparing normal ground reaction force data from the insoles and force plates. The Absolute Symmetry Index was used to calculate gait loading asymmetry at each speed. Results: Normalized root mean square errors for the normal ground reaction forces were 6.6% (standard deviation = 2.3%) and 8.9% (standard deviation = 3.8%); correlation coefficients were 0.91 and 0.95 for the prosthetic and intact limb, respectively. The mean error for Absolute Symmetry Index parameters ranged from -2.67% to 4.35%. Loading asymmetry increased with walking speed. Conclusion: This study quantified the validity of Loadsol® insoles in assessing loading asymmetry during gait in transfemoral amputees. The calibration protocol could be improved to better integrate it into a clinical setting. However, our results support the relevance of using such insoles during the clinical follow-up of transfemoral amputees. Clinical relevance: This is the first study to validate Loadsol® insoles versus force plates and report on loading asymmetry during gait at three different speeds in transfemoral amputees. Loadsol® insoles, which provide visual and audio feedback, are clinically easy to use and could have beneficial application in the amputee's rehabilitation and follow-up

    Reliability quantification and gait loading asymmetry assessment with wearable insoles in transfemoral amputee people at different speeds

    Get PDF
    Introduction Amputee people have gait defaults, as for example loading asymmetry, which increase with daily living situations. Replication of realistic daily living environment in a motion analysis laboratory (MAL) is difficult. Wearable pressure insoles, by providing normal ground reaction force (NGrF), can be used to quantify loading gait asymmetry in real life conditions. This asymmetry, considered as an indicator of the quality of the gait, is useful for physicians to monitor the rehabilitation progress or the prosthetic fitting suitability. The study aimed at quantifying the reliability of NGrF measurement and assessing the gait asymmetry of transfemoral amputee people with Pedoped® insoles against force plates. Walking speed effect was also evaluated on gait asymmetry for transfemoral amputee people (TFP). Material and methods In a MAL, five active TFP walked at three self-selected speeds on level ground wearing Pedoped® insoles. Reliability was assessed by comparing NGrF obtained from both systems with Bland-Altman plots, normalized RMSE (NRMSE) and correlation coefficient. Gait loading asymmetry was computed by Absolute Symmetry Index in loading at the three self-selected speeds with insoles. Results The mean NRMSE of NGrF was 7.2% (± 2.8%) and 9.8% (± 3.5%); and coefficient correlation was 0.91 and 0.95 for the prosthetic side and the intact side respectively. Loading asymmetry increased significantly with walking speed for each specific variable of NGrF. Discussion–conclusion After overcoming the calibration problem in amputee population, Pedoped® insoles could be easily used for gait asymmetry follow-up during rehabilitation

    Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study

    Get PDF
    Transhumeral amputees face substantial difficulties in efficiently controlling their prosthetic limb, leading to a high rate of rejection of these devices. Actual myoelectric control approaches make their use slow, sequential and unnatural, especially for these patients with a high level of amputation who need a prosthesis with numerous active degrees of freedom (powered elbow, wrist, and hand). While surgical muscle-reinnervation is becoming a generic solution for amputees to increase their control capabilities over a prosthesis, research is still being conducted on the possibility of using the surface myoelectric patterns specifically associated to voluntary Phantom Limb Mobilization (PLM), appearing naturally in most upper-limb amputees without requiring specific surgery. The objective of this study was to evaluate the possibility for transhumeral amputees to use a PLM-based control approach to perform more realistic functional grasping tasks. Two transhumeral amputated participants were asked to repetitively grasp one out of three different objects with an unworn eight-active-DoF prosthetic arm and release it in a dedicated drawer. The prosthesis control was based on phantom limb mobilization and myoelectric pattern recognition techniques, using only two repetitions of each PLM to train the classification architecture. The results show that the task could be successfully achieved with rather optimal strategies and joint trajectories, even if the completion time was increased in comparison with the performances obtained by a control group using a simple GUI control, and the control strategies required numerous corrections. While numerous limitations related to robustness of pattern recognition techniques and to the perturbations generated by actual wearing of the prosthesis remain to be solved, these preliminary results encourage further exploration and deeper understanding of the phenomenon of natural residual myoelectric activity related to PLM, since it could possibly be a viable option in some transhumeral amputees to extend their control abilities of functional upper limb prosthetics with multiple active joints without undergoing muscular reinnervation surgery

    Acoustic aspects of vowel harmony in French

    No full text
    International audienceThis paper examines acoustic aspects of vowel harmony (VH), understood as regressive vowel-to-vowel assimilation, in two regional varieties of French in six speakers' productions of 107 disyllabic word pairs. In each word pair, the word-initial vowel (V1) was phonemically either /e/ or /o/, and the word-final stressed vowel (V2) alternated between /e-E/, /ø-oe/, /o-O/ or /i-a/. Results are consistent with the idea that VH in French entails variations in tongue height along with related displacements of the tongue position along the front-back axis. These effects were independent of both the number of morphemes and lexical frequency. They were more systematic in Northern than in Southern French speakers' speech. Linear mixed-effects models strongly suggest that VH is a gradient effect of the trigger on the harmonizing vowel. Results lend support to usage-based phonological approaches regarding gradient phonetic differences as part of the gestural scores that make up the lexicon and that can be variably grammaticalized in different varieties of the language

    APSIC: Training and fitting amputees during situations of daily living

    Get PDF
    Today, the prevalence of major amputation in France can be estimated between 90,000 and 100,000 and the incidence is about 8300 new amputations per year (according to French National Authority for Health estimation). This prevalence is expected to increase in the next decade due to the ageing of the population. Even if prosthetic fitting allows amputee people recovering the walking ability, their autonomy remains limited when crossing obstacles such as slopes, stairs or cross-slopes frequently encountered during outdoors displacements. The aim of the project APSIC was to complete scientific knowledge about adaptation strategies to situations of daily living compared to level walking through an extensive motion analysis study of transtibial and transfemoral amputee compared to non-amputee people. APSIC succeeded in identifying physiologic joint functions and current prosthetic joint limitations in the studied situations, which notably resulted in the design of a prototype of ankle-knee prosthesis adapted to multimodal locomotion of transfemoral amputee. Perspectives of the clinical use of motion analysis within the rehabilitation process were explored and proved to be relevant for personalized approach of motor learning

    Guiding the training of users with a pattern similarity biofeedback to improve the performance of myoelectric pattern recognition.

    No full text
    International audienceNext generation prosthetics will rely massively on myoelectric "Pattern Recognition" (PR) based control approaches , to improve their users' dexterity. One major identified factor of successful functioning of these approaches lies in the training of amputees and in their understanding of how those prosthetics works. We thus propose here an intuitive pattern similarity biofeedback which can be easily used to train amputees and allow them to optimize their muscular contractions to improve their control performance. Experiments were conducted on twenty able-bodied participants and one transradial amputee. Their performance in controlling an interface through a myoelectric PR algorithm was evaluated; before and after a short automatic user training session consisting in using the proposed visual biofeedback for ten participants, and using a generic PR algorithm output feedback for the others ten. Participants who were trained with the proposed biofeedback increased their classification score for the retrained gesture (by 39.4%), without affecting the overall classification performance (which progressed by 10.2%) through over-training and increase of False Positive rate as observed in the control group. Additional analysis indicates a clear change in contraction strategy only in the group who used the proposed biofeedback. These preliminary results highlight the potential of this method which does not focus so much on over-optimizing the pattern recognition algorithm or on physically training the users, but on providing them simple and intuitive information to adapt or change their motor strategies to solve some misclassification issues

    Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?

    No full text
    International audienceMost transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control

    Kinematic analysis of impairments and compensatory motor behavior during prosthetic grasping in below-elbow amputees

    No full text
    International audienceAfter a major upper limb amputation, the use of myoelectric prosthesis as assistive devices is possible. However, these prostheses remain quite difficult to control for grasping and manipulation of daily life objects. The aim of the present observational case study is to document the kinematics of grasping in a group of 10 below-elbow amputated patients fitted with a myoelectric prosthesis in order to describe and better understand their compensatory strategies. They performed a grasping to lift task toward 3 objects (a mug, a cylinder and a cone) placed at two distances within the reaching area in front of the patients. The kinematics of the trunk and upper-limb on the non-amputated and prosthetic sides were recorded with 3 electromagnetic Polhemus sensors placed on the hand, the forearm (or the corresponding site on the prosthesis) and the ipsilateral acromion. The 3D position of the elbow joint and the shoulder and elbow angles were calculated thanks to a preliminary calibration of the sensor position. We examined first the effect of side, distance and objects with non-parametric statistics. Prosthetic grasping was characterized by severe temporo-spatial impairments consistent with previous clinical or kinematic observations. The grasping phase was prolonged and the reaching and grasping components uncoupled. The 3D hand displacement was symmetrical in average, but with some differences according to the objects. Compensatory strategies involved the trunk and the proximal part of the upper-limb, as shown by a greater 3D displacement of the elbow for close target and a greater forward displacement of the acromion, particularly for far targets. The hand orientation at the time of grasping showed marked side differences with a more frontal azimuth, and a more “thumb-up” roll. The variation of hand orientation with the object on the prosthetic side, suggested that the lack of finger and wrist mobility imposed some adaptation of hand pose relative to the object. The detailed kinematic analysis allows more insight into the mechanisms of the compensatory strategies that could be due to both increased distal or proximal kinematic constraints. A better knowledge of those compensatory strategies is important for the prevention of musculoskeletal disorders and the development of innovative prosthetics
    corecore