521 research outputs found

    Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent

    Full text link
    Secondary treatment effluents from municipal wastewater treatment plants (MWWTP) must achieve high water quality standards for their reuse in agriculture. To achieve these standards, ultrafiltration (UF) process, which is economically feasible, is carried out. However, UF has a drawback, membrane fouling, which causes operating difficulties and an increment of the operating cost. In order to minimize this phenomenon, it is important to determine the best operational conditions. Wastewater samples provided by MWWTP have a lot of variability in their composition due to factors such as temperature, efficiency of the secondary treatment, etc. Besides, the soluble microbial products of the secondary effluent are dependent on the type of the biological treatment implemented and its operating conditions. A model wastewater feed solution was prepared consisting of 15 mg/L of bovine serum albumin and 5.5 mg/L of dextran. In this research, UF tests were performed with the optimal simulated wastewater using two membranes UFCM5 Norit X-flow® hollow-fiber: one of them with a fiber diameter of 1.5 mm and the other one with a fiber diameter of 0.8 mm. The operational conditions, which influence membrane fouling, were varied in the range of 62 100 kPa for transmembrane pressure (TMP) and in the range of 0.8 1.2 m/s for cross-flow velocity (CFV). The best operational conditions were selected in terms of higher permeate flux. The highest permeate flux was obtained for the membrane of 0.8 mm and the lower energy consumption was achieved at a CFV of 1.2 m/s and a TMP of 62 kPa.Torà Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent. Desalination and Water Treatment. 1-7. doi:10.1080/19443994.2015.1118887S1

    A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions

    Full text link
    [EN] A new environmentally-friendly, simple, selective and sensitive probe for detecting formaldehyde, based on naturally-occurring compounds, through either colorimetric or fluorescence changes, is described. The probe is able to detect formaldehyde in both solution and the gas phase with limits of detection of 0.24 mM and 0.7 ppm, respectively. The probe has been tested to study formaldehyde emission in contaminated real atmospheres. The supported probe is easy to use and to dispose, and is safe and suitable as an individual chemodosimeter.This research was funded by the Spanish Government (projects MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047).Martínez-Aquino, C.; Costero, AM.; Gil Grau, S.; Gaviña, P. (2018). A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules. 23(10). https://doi.org/10.3390/molecules23102646S2310https://mcgroup.co.uk/news/20140627/formaldehyde-production-exceed-52-mln-tonnes.htmlGoris, J. A., Ang, S., & Navarro, C. (1998). Laboratory Safety: Minimizing the Toxic Effects of Formaldehyde. Laboratory Medicine, 29(1), 39-43. doi:10.1093/labmed/29.1.39Luo, W., Li, H., Zhang, Y., & Ang, C. Y. . (2001). Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 753(2), 253-257. doi:10.1016/s0378-4347(00)00552-1ROCHA, F., COELHO, L., LOPES, M., CARVALHO, L., FRACASSIDASILVA, J., DOLAGO, C., & GUTZ, I. (2008). Environmental formaldehyde analysis by active diffusive sampling with a bundle of polypropylene porous capillaries followed by capillary zone electrophoretic separation and contactless conductivity detection. Talanta, 76(2), 271-275. doi:10.1016/j.talanta.2008.02.037Korpan, Y. I., Gonchar, M. V., Sibirny, A. A., Martelet, C., El’skaya, A. V., Gibson, T. D., & Soldatkin, A. P. (2000). Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosensors and Bioelectronics, 15(1-2), 77-83. doi:10.1016/s0956-5663(00)00054-3Dong, S., & Dasgupta, P. K. (1986). Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environmental Science & Technology, 20(6), 637-640. doi:10.1021/es00148a016MITSUBAYASHI, K., NISHIO, G., SAWAI, M., SAITO, T., KUDO, H., SAITO, H., … MARTY, J. (2008). A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sensors and Actuators B: Chemical, 130(1), 32-37. doi:10.1016/j.snb.2007.07.086DEMKIV, O., SMUTOK, O., PARYZHAK, S., GAYDA, G., SULTANOV, Y., GUSCHIN, D., … GONCHAR, M. (2008). Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta, 76(4), 837-846. doi:10.1016/j.talanta.2008.04.040Dennison, M. J., Hall, J. M., & Turner, A. P. F. (1996). Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. The Analyst, 121(12), 1769. doi:10.1039/an9962101769Wang, X., Si, Y., Mao, X., Li, Y., Yu, J., Wang, H., & Ding, B. (2013). Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. The Analyst, 138(17), 5129. doi:10.1039/c3an00812fPinheiro, H. L. ., de Andrade, M. V., de Paula Pereira, P. A., & de Andrade, J. B. (2004). Spectrofluorimetric determination of formaldehyde in air after collection onto silica cartridges coated with Fluoral P. Microchemical Journal, 78(1), 15-20. doi:10.1016/j.microc.2004.02.017Antwi-Boampong, S., Peng, J. S., Carlan, J., & BelBruno, J. J. (2014). A Molecularly Imprinted Fluoral-P/Polyaniline Double Layer Sensor System for Selective Sensing of Formaldehyde. IEEE Sensors Journal, 14(5), 1490-1498. doi:10.1109/jsen.2014.2298872Xu, Z., Chen, J., Hu, L.-L., Tan, Y., Liu, S.-H., & Yin, J. (2017). Recent advances in formaldehyde-responsive fluorescent probes. Chinese Chemical Letters, 28(10), 1935-1942. doi:10.1016/j.cclet.2017.07.018Brewer, T. F., & Chang, C. J. (2015). An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells. Journal of the American Chemical Society, 137(34), 10886-10889. doi:10.1021/jacs.5b05340Roth, A., Li, H., Anorma, C., & Chan, J. (2015). A Reaction-Based Fluorescent Probe for Imaging of Formaldehyde in Living Cells. Journal of the American Chemical Society, 137(34), 10890-10893. doi:10.1021/jacs.5b05339Li, J.-B., Wang, Q.-Q., Yuan, L., Wu, Y.-X., Hu, X.-X., Zhang, X.-B., & Tan, W. (2016). A two-photon fluorescent probe for bio-imaging of formaldehyde in living cells and tissues. The Analyst, 141(11), 3395-3402. doi:10.1039/c6an00473cTang, Y., Kong, X., Xu, A., Dong, B., & Lin, W. (2016). Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues. Angewandte Chemie International Edition, 55(10), 3356-3359. doi:10.1002/anie.201510373He, L., Yang, X., Liu, Y., Kong, X., & Lin, W. (2016). A ratiometric fluorescent formaldehyde probe for bioimaging applications. Chemical Communications, 52(21), 4029-4032. doi:10.1039/c5cc09796gSingha, S., Jun, Y. W., Bae, J., & Ahn, K. H. (2017). Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts. Analytical Chemistry, 89(6), 3724-3731. doi:10.1021/acs.analchem.7b00044Song, H., Rajendiran, S., Kim, N., Jeong, S. K., Koo, E., Park, G., … Yoon, S. (2012). A tailor designed fluorescent ‘turn-on’ sensor of formaldehyde based on the BODIPY motif. Tetrahedron Letters, 53(37), 4913-4916. doi:10.1016/j.tetlet.2012.06.117Zhou, Y., Yan, J., Zhang, N., Li, D., Xiao, S., & Zheng, K. (2018). A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sensors and Actuators B: Chemical, 258, 156-162. doi:10.1016/j.snb.2017.11.043Chaiendoo, K., Sooksin, S., Kulchat, S., Promarak, V., Tuntulani, T., & Ngeontae, W. (2018). A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chemistry, 255, 41-48. doi:10.1016/j.foodchem.2018.02.030Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 257, 1128-1133. doi:10.1016/j.snb.2017.11.031El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224Li, Z., Xue, Z., Wu, Z., Han, J., & Han, S. (2011). Chromo-fluorogenic detection of aldehydes with a rhodamine based sensor featuring an intramolecular deoxylactam. Organic & Biomolecular Chemistry, 9(22), 7652. doi:10.1039/c1ob06448gGuglielmino, M., Allouch, A., Serra, C. A., & Calvé, S. L. (2017). Development of microfluidic analytical method for on-line gaseous Formaldehyde detection. Sensors and Actuators B: Chemical, 243, 963-970. doi:10.1016/j.snb.2016.11.093Xia, H., Hu, J., Tang, J., Xu, K., Hou, X., & Wu, P. (2016). A RGB-Type Quantum Dot-based Sensor Array for Sensitive Visual Detection of Trace Formaldehyde in Air. Scientific Reports, 6(1). doi:10.1038/srep36794Feng, L., Musto, C. J., & Suslick, K. S. (2010). A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. Journal of the American Chemical Society, 132(12), 4046-4047. doi:10.1021/ja910366pGuo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. doi:10.3390/s18093141He, L., Yang, X., Ren, M., Kong, X., Liu, Y., & Lin, W. (2016). An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoors. Chemical Communications, 52(61), 9582-9585. doi:10.1039/c6cc04254fGangopadhyay, A., Maiti, K., Ali, S. S., Pramanik, A. K., Guria, U. N., Samanta, S. K., … Mahapatra, A. K. (2018). A PET based fluorescent chemosensor with real time application in monitoring formaldehyde emissions from plywood. Analytical Methods, 10(24), 2888-2894. doi:10.1039/c8ay00514aLin, Q., Fan, Y.-Q., Gong, G.-F., Mao, P.-P., Wang, J., Guan, X.-W., … Wei, T.-B. (2018). Ultrasensitive Detection of Formaldehyde in Gas and Solutions by a Catalyst Preplaced Sensor Based on a Pillar[5]arene Derivative. ACS Sustainable Chemistry & Engineering, 6(7), 8775-8781. doi:10.1021/acssuschemeng.8b01124Cox, E. D., & Cook, J. M. (1995). The Pictet-Spengler condensation: a new direction for an old reaction. Chemical Reviews, 95(6), 1797-1842. doi:10.1021/cr00038a004Jonsson, G., Launosalo, T., Salomaa, P., Walle, T., Sjöberg, B., Bunnenberg, E., … Records, R. (1966). Fluorescence Studies on Some 6,7-Substituted 3,4-Dihydroisoquinolines Formed from 3-Hydroxytyramine (Dopamine) and Formaldehyde. Acta Chemica Scandinavica, 20, 2755-2762. doi:10.3891/acta.chem.scand.20-2755BJÖRKLUND, A., EHINGER, B., & FALCK, B. (1968). A METHOD FOR DIFFERENTIATING DOPAMINE FROM NORADRENALINE IN TISSUE SECTIONS BY MICROSPECTROFLUOROMETRY. Journal of Histochemistry & Cytochemistry, 16(4), 263-270. doi:10.1177/16.4.263Stöckigt, J., Antonchick, A. P., Wu, F., & Waldmann, H. (2011). The Pictet-Spengler Reaction in Nature and in Organic Chemistry. Angewandte Chemie International Edition, 50(37), 8538-8564. doi:10.1002/anie.201008071Allou, L., El Maimouni, L., & Le Calvé, S. (2011). Henry’s law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition. Atmospheric Environment, 45(17), 2991-2998. doi:10.1016/j.atmosenv.2010.05.04

    Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection

    Full text link
    [EN] Gold nanoparticles functionalized with resorcinol moieties have been prepared and used for detecting formaldehyde both in solution and gas phases. The detection mechanism is based on the color change of the probe upon the aggregation of the nanoparticles induced by the polymerization of the resorcinol moieties in the presence of formaldehyde. A limit of detection of 0.5 ppm in solution has been determined. The probe can be deployed for the detection of formaldehyde emissions from composite wood boards.We thank the Spanish Government (projects MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support.Martínez-Aquino, C.; Costero, AM.; Gil Grau, S.; Gaviña, P. (2019). Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection. Nanomaterials. 9(2):1-9. https://doi.org/10.3390/nano9020302S1992Salthammer, T. (2013). Formaldehyde in the Ambient Atmosphere: From an Indoor Pollutant to an Outdoor Pollutant? Angewandte Chemie International Edition, 52(12), 3320-3327. doi:10.1002/anie.201205984Bruemmer, K. J., Brewer, T. F., & Chang, C. J. (2017). Fluorescent probes for imaging formaldehyde in biological systems. Current Opinion in Chemical Biology, 39, 17-23. doi:10.1016/j.cbpa.2017.04.010Lang, I., Bruckner, T., & Triebig, G. (2008). Formaldehyde and chemosensory irritation in humans: A controlled human exposure study. Regulatory Toxicology and Pharmacology, 50(1), 23-36. doi:10.1016/j.yrtph.2007.08.012IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 100F (2012). Chemical Agents and Related Occupations: Formaldehydehttps://monographs.iarc.fr/wp-content/uploads/2018/06/mono100F-29.pdfChung, P.-R., Tzeng, C.-T., Ke, M.-T., & Lee, C.-Y. (2013). Formaldehyde Gas Sensors: A Review. Sensors, 13(4), 4468-4484. doi:10.3390/s130404468Soman, A., Qiu, Y., & Chan Li, Q. (2008). HPLC-UV Method Development and Validation for the Determination of Low Level Formaldehyde in a Drug Substance. Journal of Chromatographic Science, 46(6), 461-465. doi:10.1093/chromsci/46.6.461Risholm-Sundman, M., Larsen, A., Vestin, E., & Weibull, A. (2007). Formaldehyde emission—Comparison of different standard methods. Atmospheric Environment, 41(15), 3193-3202. doi:10.1016/j.atmosenv.2006.10.079Kim, S., & Kim, H.-J. (2005). Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Bioresource Technology, 96(13), 1457-1464. doi:10.1016/j.biortech.2004.12.003Yeh, T.-S., Lin, T.-C., Chen, C.-C., & Wen, H.-M. (2013). Analysis of free and bound formaldehyde in squid and squid products by gas chromatography–mass spectrometry. Journal of Food and Drug Analysis, 21(2), 190-197. doi:10.1016/j.jfda.2013.05.010Toews, J., Rogalski, J. C., Clark, T. J., & Kast, J. (2008). Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Analytica Chimica Acta, 618(2), 168-183. doi:10.1016/j.aca.2008.04.049Zhou, X., Lee, S., Xu, Z., & Yoon, J. (2015). Recent Progress on the Development of Chemosensors for Gases. Chemical Reviews, 115(15), 7944-8000. doi:10.1021/cr500567rZhou, Y., Yan, J., Zhang, N., Li, D., Xiao, S., & Zheng, K. (2018). A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sensors and Actuators B: Chemical, 258, 156-162. doi:10.1016/j.snb.2017.11.043Chaiendoo, K., Sooksin, S., Kulchat, S., Promarak, V., Tuntulani, T., & Ngeontae, W. (2018). A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chemistry, 255, 41-48. doi:10.1016/j.foodchem.2018.02.030El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224Martínez-Aquino, C., Costero, A., Gil, S., & Gaviña, P. (2018). A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules, 23(10), 2646. doi:10.3390/molecules23102646Guo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. doi:10.3390/s18093141Gangopadhyay, A., Maiti, K., Ali, S. S., Pramanik, A. K., Guria, U. N., Samanta, S. K., … Mahapatra, A. K. (2018). A PET based fluorescent chemosensor with real time application in monitoring formaldehyde emissions from plywood. Analytical Methods, 10(24), 2888-2894. doi:10.1039/c8ay00514aBi, A., Yang, S., Liu, M., Wang, X., Liao, W., & Zeng, W. (2017). Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Advances, 7(58), 36421-36432. doi:10.1039/c7ra05651fSaha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739-2779. doi:10.1021/cr2001178Mayer, K. M., & Hafner, J. H. (2011). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828-3857. doi:10.1021/cr100313vKong, B., Zhu, A., Luo, Y., Tian, Y., Yu, Y., & Shi, G. (2011). Sensitive and Selective Colorimetric Visualization of Cerebral Dopamine Based on Double Molecular Recognition. Angewandte Chemie International Edition, 50(8), 1837-1840. doi:10.1002/anie.201007071Ma, P., Liang, F., Wang, D., Yang, Q., Ding, Y., Yu, Y., … Wang, X. (2014). Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS. Microchimica Acta, 182(3-4), 863-869. doi:10.1007/s00604-014-1400-9Wen, G., Liang, X., Liang, A., & Jiang, Z. (2015). Gold Nanorod Resonance Rayleigh Scattering-Energy Transfer Spectral Determination of Trace Formaldehyde with 4-Amino-3-Hydrazino-5-Mercap-1,2,4-Triazole. Plasmonics, 10(5), 1081-1088. doi:10.1007/s11468-015-9893-6Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 257, 1128-1133. doi:10.1016/j.snb.2017.11.031Al-Muhtaseb, S. A., & Ritter, J. A. (2003). Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Advanced Materials, 15(2), 101-114. doi:10.1002/adma.200390020Martí, A., Costero, A. M., Gaviña, P., & Parra, M. (2015). Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications, 51(15), 3077-3079. doi:10.1039/c4cc10149aGodoy-Reyes, T. M., Llopis-Lorente, A., Costero, A. M., Sancenón, F., Gaviña, P., & Martínez-Máñez, R. (2018). Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sensors and Actuators B: Chemical, 258, 829-835. doi:10.1016/j.snb.2017.11.181Lewicki, J. P., Fox, C. A., & Worsley, M. A. (2015). On the synthesis and structure of resorcinol-formaldehyde polymeric networks – Precursors to 3D-carbon macroassemblies. Polymer, 69, 45-51. doi:10.1016/j.polymer.2015.05.016Martí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339Appendino, G., Minassi, A., Daddario, N., Bianchi, F., & Tron, G. C. (2002). Chemoselective Esterification of Phenolic Acids and Alcohols. Organic Letters, 4(22), 3839-3841. doi:10.1021/ol0266471Haiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 79(11), 4215-4221. doi:10.1021/ac0702084Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi:10.1016/j.colsurfb.2006.08.00

    El profesorado y la atención a la diversidad en la ESO

    Get PDF
    Se presentan los resultados de un trabajo de investigación en el que en primer lugar se ha elaborado un cuestionario para obtener información del profesorados de la ESO sobre la atención a la diversidad, cómo ha afectado ésta a su práctica docente, el conocimiento que tiene de la normativa, y su preparación en dicha materia

    Curso on line de formación de profesorado de la ESO sobre atención a la diversidad

    Get PDF
    M.ª Vicenta Ferrandis Martínez ([email protected]); Claudia Grau Rubio ([email protected]) ; M.ª Carmen Fortes del Valle ([email protected])Se describe y valora un curso on line, de treinta horas de duración, para formar a los profesores de la ESO sobre atención a la diversidad. El curso se desarrolla en el CEFIRE de Godella a través de la plataforma tecnológica de código abierto MOODLE. Se constata la falta de formación del profesorado de secundaria sobre la atención a la diversidad; que su nivel de conocimientos en esta materia es muy diverso; que es controvertida su aplicación; y que la formación on line tiene sus limitaciones

    Detección de secuelas neurológicas y programas de intervención psicoeducativa en niños de educación infantil con tumores en el cerebelo

    Get PDF
    En este artículo se describen las secuelas neurológicas producidas en dos niños de educación infantil diagnosticados de un tumor en el cerebelo; asimismo, se ofrecen los resultados obtenidos por estos niños en las pruebas seleccionadas para la evaluación de dichas secuelas y la descripción de las áreas deficitarias en las que es aconsejable realizar un programa de intervención psicoeducativa

    Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    Full text link
    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants contain a large amount of different compounds and that there is certain variability in their composition, the use of a simplified model wastewater consisting of only few compounds may help to simulate better the ultrafiltration fouling trend. The main secondary treatment effluent components responsible for fouling membrane during ultrafiltration tests are extracellular polymeric substances. These substances are mainly composed of proteins and polysaccharides, thus they are commonly used to prepare model wastewaters. This work consisted in two parts. Firstly, a model wastewater was selected among different model solutions mimicking secondary treatment effluent. Secondly, ultrafiltration behaviour of the selected model solution was compared with the behaviour of the secondary effluent in the ultrafiltration tests at different cross-flow velocities and transmembrane pressures. The membrane used in the ultrafiltration tests was UFCM5 Norit X-flow® hollow-fiber. To prepare model wastewaters, three parameters (proteins and carbohydrates concentrations and chemical oxygen demand) were considered. The model wastewater that represented the best the fouling trend of the secondary treatment effluent had a composition of 15 mg/l of bovine serum albumin and 5.5 mg/l of dextranThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater. Desalination and Water Treatment. 1-9. doi:10.1080/19443994.2014.999714S19Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Hwang, K.-J., & Chiang, Y.-C. (2014). Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Separation and Purification Technology, 125, 74-82. doi:10.1016/j.seppur.2014.01.041Yamamura, H., Okimoto, K., Kimura, K., & Watanabe, Y. (2014). Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes. Water Research, 54, 123-136. doi:10.1016/j.watres.2014.01.024Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Vincent-Vela, M.-C., Álvarez-Blanco, S., Lora-García, J., & Bergantiños-Rodríguez, E. (2009). Estimation of the gel layer concentration in ultrafiltration: Comparison of different methods. Desalination and Water Treatment, 3(1-3), 157-161. doi:10.5004/dwt.2009.454Valiño, V., San Román, M. F., Ibáñez, R., Benito, J. M., Escudero, I., & Ortiz, I. (2014). Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 135, 145-157. doi:10.1016/j.seppur.2014.07.051Luck, P. J., Vardhanabhuti, B., Yong, Y. H., Laundon, T., Barbano, D. M., & Foegeding, E. A. (2013). Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 96(9), 5522-5531. doi:10.3168/jds.2013-6617Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Salahi, A., Mohammadi, T., Rahmat Pour, A., & Rekabdar, F. (2009). Oily wastewater treatment using ultrafiltration. Desalination and Water Treatment, 6(1-3), 289-298. doi:10.5004/dwt.2009.480Janssen, A. N., van Agtmaal, J., van den Broek, W. B. P., de Koning, J., Menkveld, H. W. H., Schrotter, J.-C., … van der Graaf, J. H. J. M. (2008). Monitoring of SUR to control and enhance the performance of dead-end ultrafiltration installations treating wwtp effluent. Desalination, 231(1-3), 99-107. doi:10.1016/j.desal.2007.10.024Torà-Grau, M., Soler-Cabezas, J. L., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment, 1-7. doi:10.1080/19443994.2014.93986

    Methodology for the detection of residential vulnerable areas: the case of Barcelona

    Get PDF
    In a context of a shifting environmental, economic and social paradigm, European cities face a situation that is at the same time challenge and opportunity: the need for urban rehabilitation of the vulnerable degraded socio residential fabric. Public administrations in big cities and metropolitan areas are confronted with both the undercurrent need of actualization of the built stock and the rise of urban residential vulnerability. The city of Barcelona, as many others, is the result of multiple phenomena with high urban and social consequences. The socio spatial integration of immigrant population, the touristic rise and gentrification processes are current situations simultaneously taking place in the city. In parallel, a framework of economic crisis in which public investments in urban and social matters decrease, provides a temporal juncture that results into an increase of social polarization and socio economic inequality that becomes evident and expressed in the territory. This research focuses in the case of Barcelona, and presents a methodology based on a system of indicators elaborated through the exploitation of statistical data complemented with very specific data supplied by the Barcelona City Council. The accurate knowledge of socio demographic, socioeconomic and residential and urban characteristics is crucial in order to define the very complex urban dynamics that describe in the city neighbourhoods and areas. Residential vulnerability is defined as an assembly of objective conditions that relate to residential space and indicate situations of social discrimination and structural disadvantage of the population, related to a specific time and context. Thus, it is relevant to analyse the concentration of certain indicators of vulnerability in specific places or neighbourhoods, to contrast its effect on the socio-residential situation and its temporal evolution in order to identify tendencies. The present study contributes to the identification of data sources and a system to calculate the purposed indicators, the elaboration of a GIS analysis in order to determine the characterization of neighbourhoods and census sections according to each indicator, and the identification of areas with a higher degree of problematic based on synthetic analysis. A very relevant knowledge basis that can be used by public policy makers in order to establish measures that define vulnerable areas where to carry out actions that foster urban equality.Postprint (published version

    Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant

    Full text link
    The quality of the secondary treatment effluent (STE) from a municipal wastewater treatment plant (MWWTP) is not good enough for some applications such as agriculture. Membrane ultrafiltration (UF) has been proven to be a reliable tertiary treatment to achieve the needed water quality. The productivity of the UF processes depends on the membrane fouling. The aim of this work is to prepare a model wastewater that could mimic the fouling trend of a STE wastewater from a MWWTP. Several model wastewaters consisting of different proteins and carbohydrates were used in the UF experiments. UF was also performed with a STE. The membrane used in the UF tests was a UFCM5 from Norit X-flow® hydrophilic polyethersulfone/polyvinylpyrrolidone blend hollow-fiber UF membrane of 200 KDa molecular weight cut-off with a fiber diameter of 1.5 mm. Membrane configuration was inside-out. UF tests with model wastewater and STE wastewater were compared. The results showed that the best model wastewater, which represents the fouling trend of STE wastewater is the model wastewater whose composition is 15 mg/l of bovine serum albumin and 5.5 mg/l of dextran.The authors of this work wish to gratefully acknowledge the financial support from the Generalitat Valenciana through the program "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment. 1-7. https://doi.org/10.1080/19443994.2014.939865S17Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Hao, Y., Moriya, A., Maruyama, T., Ohmukai, Y., & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of Membrane Science, 376(1-2), 247-253. doi:10.1016/j.memsci.2011.04.035Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Nguyen, T.-A., Yoshikawa, S., Karasu, K., & Ookawara, S. (2012). A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension. Journal of Membrane Science, 403-404, 84-93. doi:10.1016/j.memsci.2012.02.026Domínguez Chabaliná, L., Rodríguez Pastor, M., & Rico, D. P. (2013). Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC. Talanta, 115, 706-712. doi:10.1016/j.talanta.2013.05.062Viebke, C. (2000). Determination of molecular mass distribution of κ-carrageenan and xanthan using asymmetrical flow field-flow fractionation. Food Hydrocolloids, 14(3), 265-270. doi:10.1016/s0268-005x(99)00066-1Kelly, S. T., & Zydney, A. L. (1995). Mechanisms for BSA fouling during microfiltration. Journal of Membrane Science, 107(1-2), 115-127. doi:10.1016/0376-7388(95)00108-oHwang, K.-J., & Sz, P.-Y. (2011). Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures. Chemical Engineering Journal, 166(2), 669-677. doi:10.1016/j.cej.2010.11.04

    Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer

    Full text link
    [EN] Metabolism reprogramming is considered a hallmark of cancer. The study of bladder cancer (BC) metabolism could be the key to developing new strategies for diagnosis and therapy. This work aimed to identify tissue and urinary metabolic signatures as biomarkers of BC and get further insight into BC tumor biology through the study of gene-metabolite networks and the integration of metabolomics and transcriptomics data. BC and control tissue samples (n = 44) from the same patients were analyzed by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance and microarrays techniques. Besides, urinary profiling study (n = 35) was performed in the same patients to identify a metabolomic profile, linked with BC tissue hallmarks, as a potential non-invasive approach for BC diagnosis. The metabolic profile allowed for the classification of BC tissue samples with a sensitivity and specificity of 100%. The most discriminant metabolites for BC tissue samples reflected alterations in amino acids, glutathione, and taurine metabolic pathways. Transcriptomic data supported metabolomic results and revealed a predominant downregulation of metabolic genes belonging to phosphorylative oxidation, tricarboxylic acid cycle, and amino acid metabolism. The urinary profiling study showed a relation with taurine and other amino acids perturbed pathways observed in BC tissue samples, and classified BC from non-tumor urine samples with good sensitivities (91%) and specificities (77%). This urinary profile could be used as a non-invasive tool for BC diagnosis and follow-up.This research was funded by FEDER cofounded MINECO grant SAF2015-66015-R, MAT2015-64139-C4-1-R, MAT2015-64139-C4-3-R, ISCIII-RETICRD12/0036/0009, PIE 15/00076, CB/16/00228, CTQ2016-79561-P; and the PROMETEO II/2014/047 and PROMETEO 2018/24 projects.Loras, A.; Suárez-Cabrera, C.; Martínez-Bisbal, M.; Quintás, G.; Paramio, JM.; Martínez-Máñez, R.; Gil Grau, S.... (2019). Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer. Cancers. 11(5):1-19. https://doi.org/10.3390/cancers1105068611911
    corecore