2,978 research outputs found

    Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock

    Get PDF
    We report on laboratory experiments designed to investigate the influence of pore pressure oscillations on the effective permeability of fractured rock. Berea sandstone samples were fractured in situ under triaxial stresses of tens of megapascals, and deionized water was forced through the incipient fracture under conditions of steady and oscillating pore pressure. We find that short-term pore pressure oscillations induce long-term transient increases in effective permeability of the fractured samples. The magnitude of the effective permeability enhancements scales with the amplitude of pore pressure oscillations, and changes persist well after the stress perturbation. The maximum value of effective permeability enhancement is 5 × 10^(−16) m^2 with a background permeability of 1 × 10^(−15) m^2; that is, the maximum enhanced permeability is 1.5 × 10^(−15) m^2. We evaluate poroelastic effects and show that hydraulic storage release does not explain our observations. Effective permeability recovery following dynamic oscillations occurs as the inverse square root of time. The recovery indicates that a reversible mechanism, such as clogging/unclogging of fractures, as opposed to an irreversible one, like microfracturing, is responsible for the transient effective permeability increase. Our work suggests the feasibility of dynamically controlling the effective permeability of fractured systems. The result has consequences for models of earthquake triggering and permeability enhancement in fault zones due to dynamic shaking from near and distant earthquakes

    Diffraction dissociation in proton-proton collisions at s\sqrt{s} = 0.9 TeV, 2.76 TeV and 7 TeV with ALICE at the LHC

    Full text link
    The relative rates of single- and double- diffractive processes were measured with the ALICE detector by studying properties of gaps in the pseudorapidity distribution of particles produced in proton-proton collisions at s\sqrt{s} = 0.9 TeV, 2.76 TeV and 7 TeV. ALICE triggering efficiencies are determined for various classes of events, using a detector simulation validated with data on inclusive particle production. Cross-sections are determined using van der Meer scans to measure beam properties and obtain a measurement of the luminosity

    Xray Tomographic Microscopic Studies a Resin Embedded Paint Sample from a Mechanical Failing Area in the Floor Tiles of The Art of Painting by Johannes Vermeer (1632-1675)

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201

    The critical slip distance for seismic and aseismic fault zones of finite width

    Get PDF
    We present a conceptual model for the effective critical friction distance for fault zones of finite width. A numerical model with 1D elasticity is used to investigate implications of the model for shear traction evolution during dynamic and quasi-static slip. The model includes elastofrictional interaction of multiple, parallel slip surfaces, which obey rate and state friction laws with either Ruina (slip) or Dieterich (time) state evolution. A range of slip acceleration histories is investigated by imposing perturbations in slip velocity at the fault zone boundary and using radiation damping to solve the equations of motion. The model extends concepts developed for friction of bare surfaces, including the critical friction distance L, to fault zones of finite width containing wear and gouge materials. We distinguish between parameters that apply to a single frictional surface, including L and the dynamic slip weakening distance do, and those that represent slip for the entire fault zone, which include the effective critical friction distance, Dcb, and the effective dynamic slip weakening distance Do. A scaling law for Dcb is proposed in terms of L and the fault zone width. Earthquake source parameters depend on net slip across a fault zone and thus scale with Dcb, Do, and the slip at yield strength Da. We find that Da decreases with increasing velocity jump size for friction evolution via the Ruina law, whereas it is independent of slip acceleration rate for the Dieterich law. For both laws, Da scales with fault zone width and shear traction exhibits prolonged hardening before reaching a yield strength. The parameters Dcb and Do increase roughly linearly with fault zone thickness. This chapter and a companion chapter in the volume discuss the problem of reconciling laboratory measurements of the critical friction distance with theoretical and field-based estimates of the effective dynamic slip weakening distance

    Endovascular Treatment of a Ruptured Pararenal Abdominal Aortic Aneurysm in a Patient With Coronavirus Disease-2019: Suggestions and Case Report

    Get PDF
    The aim of this report is to discuss emergent repair for complex aortic diseases in patients affected by novel coronavirus pneumonia (coronavirus disease-2019 [COVID-19]), describing a case of ruptured pararenal aortic aneurysm. An eighty-year-old man with COVID-19 was admitted for ruptured aneurysm of the pararenal aorta and hemorrhagic shock. Endovascular repair was chosen, and a proximal extension of the previous abdominal endograft was performed with parallel stents in the right renal artery and the superior mesenteric artery. Endovascular treatment and early anticoagulation are the key for success for vascular emergencies in patients with COVID-19, despite the risk of late endoleak

    Post-dispersal fate of seeds in the Monte desert of Argentina: patterns of germination in successive wet and dry years

    Get PDF
    1 Patterns of seed germination of grass and forb species were studied in open Prosopis woodland of the central Monte desert (Argentina) during several years, to test the hypotheses that (i) seed germination is positively affected by both rainfall and protection afforded by vegetation cover (a facilitative effect), (ii) the number of surviving plants is positively influenced by rainfall but negatively affected by established vegetation (a competitive effect), and (iii) seed loss from soil banks owing to germination is lower than that caused by granivorous animals. 2 Forb species germinated during restricted periods, either in early autumn or in spring. Grasses, however, germinated throughout the growing season, but because seedlings could not be identified to species level, it was impossible to discern whether different species germinated in particular seasons, or if all grasses germinated in all seasons. Grass and forb germination were generally of similar magnitude, but grass germination increased by an order of magnitude during a summer of unusually abundant rainfall related to an El Niño Southern Oscillation (ENSO) event. 3 Overall, the spatial distribution of neither germinating seeds nor surviving plants could be explained by interactions with established vegetation (facilitation and competition effects, respectively). An alternative explanation may be provided by the distribution of forb and grass seeds in the soil, 4 Seed loss owing to germination was low in both dry and rainy years. For forbs, such loss totalled 4%. Total grass-seed loss to germination was usually < 0.5%, and the 5% reached in 1997-98 corresponded to an interruption of a prolonged drought by unusually abundant rainfall associated with a reduced seed bank. 5 Grass-seed loss caused by germination was one to two orders of magnitude lower than that reported due to autumn-winter granivory in the central Monte desert.Fil: Marone, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Horno, Manuel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Gonzalez del Solar, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentin
    • 

    corecore