68 research outputs found
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor
The charged pion form factor, Fpi(Q^2), is an important quantity which can be
used to advance our knowledge of hadronic structure. However, the extraction of
Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is
inherently model dependent. Therefore, a detailed description of the extraction
of the charged pion form factor from electroproduction data obtained recently
at Jefferson Lab is presented, with particular focus given to the dominant
uncertainties in this procedure. Results for Fpi are presented for
Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically
below the monopole parameterization that describes the low Q^2 data used to
determine the pion charge radius. The pion form factor can be calculated in a
wide variety of theoretical approaches, and the experimental results are
compared to a number of calculations. This comparison is helpful in
understanding the role of soft versus hard contributions to hadronic structure
in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
Measurement of the Transverse-Longitudinal Cross Sections in the p (e,e'p)pi0 Reaction in the Delta Region
Accurate measurements of the p(e,e?p)pi0 reaction were performed at
Q^2=0.127(GeV/c)^2 in the Delta resonance energy region. The experiments at the
MIT-Bates Linear Accelerator used an 820 MeV polarized electron beam with the
out of plane magnetic spectrometer system (OOPS). In this paper we report the
first simultaneous determination of both the TL and TL? (``fifth" or polarized)
cross sections at low Q^{2} where the pion cloud contribution dominates the
quadrupole amplitudes (E2 and C2). The real and imaginary parts of the
transverse-longitudinal cross section provide both a sensitive determination of
the Coulomb quadrupole amplitude and a test of reaction calculations.
Comparisons with model calculations are presented. The empirical MAID
calculation gives the best overall agreement with this accurate data. The
parameters of this model for the values of the resonant multipoles are
|M_{1+}(I=3/2)|= (40.9 \pm 0.3)10^{-3}/m_pi, CMR= C2/M1= -6.5 \pm 0.3%,
EMR=E2/M1=-2.2 \pm 0.9%, where the errors are due to the experimental
uncertainties.Comment: 10 pages, 3 figures, minor corrections and addition
Probing the high momentum component of the deuteron at high Q^2
The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was
measured over a kinematical range that made it possible to study this reaction
for a set of fixed missing momenta as a function of the neutron recoil angle
theta_nq and to extract missing momentum distributions for fixed values of
theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg)
recent calculations, which predict that final state interactions are small,
agree reasonably well with the experimental data. Therefore these experimental
reduced cross sections provide direct access to the high momentum component of
the deuteron momentum distribution in exclusive deuteron
electro-disintegration.Comment: 5 pages, 2 figure
Polarization transfer in wide-angle Compton scattering and single-pion photoproduction from the proton
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θpcm=70°. The longitudinal transfer KLL, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ∼3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude
Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering
We present the first measurements of the \vec{e}p->epg cross section in the
deeply virtual Compton scattering (DVCS) regime and the valence quark region.
The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross
section indicates the twist-2 dominance of DVCS, proving that generalized
parton distributions (GPDs) are accessible to experiment at moderate Q^2. The
helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We
present the first model-independent measurement of linear combinations of GPDs
and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication.
References added. One figure remove
Recoil Polarization for Delta Excitation in Pion Electroproduction
We measured angular distributions of recoil-polarization response functions
for neutral pion electroproduction for W=1.23 GeV at Q^2=1.0 (GeV/c)^2,
obtaining 14 separated response functions plus 2 Rosenbluth combinations; of
these, 12 have been observed for the first time. Dynamical models do not
describe quantities governed by imaginary parts of interference products well,
indicating the need for adjusting magnitudes and phases for nonresonant
amplitudes. We performed a nearly model-independent multipole analysis and
obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)%
that are distinctly different from those from the traditional Legendre analysis
based upon M1+ dominance and sp truncation.Comment: 5 pages, 2 figures, for PR
Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime
We present measurements of the ep->ep pi^0 cross section extracted at two
values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson
Lab Hall A. The kinematic range allows to study the evolution of the extracted
hadronic tensor as a function of Q^2 and W. Results will be confronted with
Regge inspired calculations and GPD predictions. An intepretation of our data
within the framework of semi-inclusive deep inelastic scattering has also been
attempted
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
We report the most precise measurement to date of a parity-violating
asymmetry in elastic electron-proton scattering. The measurement was carried
out with a beam energy of 3.03 GeV and a scattering angle =6
degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per
million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor
combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/-
0.012 (FF) where the first two errors are experimental and the last error is
due to the uncertainty in the neutron electromagnetic form factor. This result
significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2.
A consistent picture emerges when several measurements at about the same Q^2
value are combined: G_E^s is consistent with zero while G_M^s prefers positive
values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one
figure to improve focu
Electroexcitation of the at low momentum transfer
We report on new p measurements at the
resonance at the low momentum transfer region. The mesonic
cloud dynamics is predicted to be dominant and rapidly changing in this
kinematic region offering a test bed for chiral effective field theory
calculations. The new data explore the low dependence of the resonant
quadrupole amplitudes while extending the measurements of the Coulomb
quadrupole amplitude to the lowest momentum transfer ever reached. The results
disagree with predictions of constituent quark models and are in reasonable
agreement with dynamical calculations that include pion cloud effects, chiral
effective field theory and lattice calculations. The reported measurements
suggest that improvement is required to the theoretical calculations and
provide valuable input that will allow their refinements
- …