10 research outputs found

    Reduced Cortical Thickness in Mental Retardation

    Get PDF
    Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications

    Efficient energy transfer in ethynyl bridged corrole–BODIPY dyads

    No full text
    A series of new corrole–BODIPY dyads bridged by ethynyl linker moieties have been synthesized in high yields and fully characterized. The direction of energy transfer upon electronic excitation has been explored, and was found to be dependent on the number of corrole rings and their connection position on the BODIPY core. Intense bands in the absorption spectrum cover most of the visible region, which is potentially advantageous for capturing solar energy. Studies on the excitation spectra and lifetimes suggest that the energy transfer efficiency between the BODIPY and corrole moieties reaches almost 85%, which appears to be efficient in the context of energy transfer within the singlet manifold

    The neural coorelates of risk propensity in males and females using resting-state fMRI

    No full text
    Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity

    Functional connectivity hubs could serve as a potential biomarker in alzheimer's disease: a reproducible study

    No full text
    Cortical hubs that link functionally specialized neural systems are crucial for cognition. Evidence suggests that the location and organization of hubs are related to Alzheimer’s disease (AD). However, two issues remain unclear: (i) where and how hubs change in AD, and (ii) whether hubs could be a potential pre-diagnosis biomarker for mild cognitive impairment (MCI) - a prodromal phase of AD. Accordingly, we examined the functional connectivity density (FCD) in two cohorts of resting-state functional magnetic resonance imaging (fMRI) scans (26 AD, 27 controls; 33 AD, 21 controls) and revealed consistently vulnerable FCD hub regions in AD compared with controls: within the default mode network, short-range FCD decreases in the posterior cingulate cortex and increases in the medial prefrontal cortex; within the frontal lobe, long-range FCD increases in the medial prefrontal cortex, superior frontal gyrus and middle frontal gyrus. Furthermore, FCD correlates with cognitive score and could distinguish MCI from controls with high accuracy (71.08% in dataset 1, 81% in dataset 2). By reflecting a robust and reproducible global shift in brain functions, FCD provides an fMRI biomarker for the underlying mechanism in AD

    Brain regions with cortical thickness reductions in mental retardation and distribution of average cortical thickness (in mm) of each corresponding region.

    No full text
    <p>The results were corrected for multiple comparisons (P<0.05, the vertex-based RFT correction). The color bar indicates the corrected P-values. The integers are the cluster IDs corresponding to those of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029673#pone-0029673-t001" target="_blank">Table 1</a>. Normal controls, NC; Patients with mental retardation, PMR.</p

    Demographics of the samples.

    No full text
    <p>Data are mean (SD).</p><p>*no significant difference between groups (p>0.05).</p
    corecore