16 research outputs found

    Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest

    Get PDF
    12 páginas, 10 figuras.The complex sequence of inductive events responsible for the generation of the neural crest at the border between the neural plate and the epidermis, triggers a genetic cascade involving several families of transcription factors. Two members of the Snail family, Snail and Slug, have both been implicated in this cascade. In chick and Xenopus, loss- and gain-of-function experiments have provided evidence that Slug plays a key role in neural crest development. However, in contrast to the chick, Snail rather than Slug is expressed in the premigratory neural crest in the mouse and, in Xenopus, Snail precedes Slug expression in this population. Thus, in order to study the function of Snail in neural crest development in Xenopus, we have carried out conditional gain- and loss-of-function experiments using different Snail constructs fused to a glucocorticoid receptor element. We show that Snail is able to induce the expression of Slug and all other neural crest markers tested (Zic5, FoxD3, Twist and Ets1) at the time of specification. This activation is observed in whole embryos and in animal caps, in the absence of neural plate and mesodermal markers. We show that Snail is required for neural crest specification and migration and that it works as a transcriptional repressor. These functions have been previously attributed to Slug. However, Slug alone is unable to induce other neural crest markers in animal cap assays, and we show that Snail and Slug can be functionally equivalent when tested in overexpression studies. This suggests that, in Xenopus embryos, at least some of the functions previously attributed to Slug can be carried out by Snail. This is additionally supported by rescue experiments in embryos injected with dominant-negative constructs that indicate that Snail lies upstream of Slug in the genetic cascade leading to neural crest formation and that it plays a key role in crest development.Work in the laboratory of R. M. was supported by an International Research Scholar Award from the Howard Hughes Medical Institute to R. M., and by grants from Fondecyt (#1020688 to R. M., #3010061 to M. J. A.), Fundación Antorchas (#13953-3 to M. J. A.), the Millennium Program (P99-137F to R. M.), the Spanish Ministry of Science and Technology (PM98-125 and BMC2002-00383) to M. A. N. and a collaborative project from CSIC/CONICYT (2001CL0023) to R. M. and M. A. N.Peer reviewe

    Extracellular signals, cell interactions and transcription factors involved in the induction of the neural crest cells

    No full text
    The neural crest is induced at the border between the neural plate and the epidermis. A complex set of signals is required for the specification of the crest cells between the epidermis and the neural plate. Here we discuss evidence supporting a model for neural crest induction in which different signals contribute in a sequential order. First, a gradient of bone morphogenic proteins (BMPs) is established in the ectoderm that results in segreggation into neural plate, neural folds and epidermis at increasing levels of BMP activity. Thus, the neural folds are induced at a precise threshold concentration of BMP, but this neural fold has an anterior character. In a second step, these anterior neural folds are transformed into prospective neural crest by posteriorizing signals due to fibroblast growth factor, Wnts and retinoic acid. Finally, the induced cells interact to complete neural crest induction by a process that requires Notch/Delta signaling. Once neural crest formation has been induced by this combination of extracellular and intracellular signals, a cascade of transcription factors is activated in these cells that culminates in the ultimate steps of neural crest differentiatio

    Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development

    No full text
    The vestigial gene (vg) was first characterized in Drosophila and several homologues were identified in vertebrates and called vestigial like 1-4 (vgll1-4). Vgll proteins interact with the transcription factors TEF-1 and MEF-2 through a conserved region called TONDU (TDU). Vgll4s are characterized by two tandem TDU domains which differentiate them from other members of the vestigial family. In Xenopus two genes were identified as vgll4. Our bioinformatic analysis demonstrated that these two genes are paralogues and must be named differently. We designated them as vgll4 and vgll4l. In situ hybridization analysis revealed that the expression of these two genes is rather different. At gastrula stage, both were expressed in the animal pole. However, at neurula stage, vgll4 was mainly expressed in the neural plate and neural folds, while vgll4l prevailed in the neural folds and epidermis. From the advanced neurula stage onward, expression of both genes was strongly enhanced in neural tissues, anterior neural plate, migrating neural crest, optic and otic vesicles. Nevertheless, there were some differences: vgll4 presented somite expression and vgll4l was localized at the skin and notochord. Our results demonstrate that Xenopus has two orthologues of the vgll4 gene, vgll4 and vgll4l with differential expression in Xenopus embryos and they may well have different roles during development.Fil: Barrionuevo, María Guadalupe del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Aybar, Manuel Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Tríbulo, Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin

    Rhodotorula glutinis T13 as a potential source of microbial lipids for biodiesel generation

    No full text
    Single cell oils (SCO) are a promising source of oils that could be exploited in different industrial areas. SCO for biodiesel production circumvents the controversy food vs. fuel, does not require large land areas for culture, and is independent of climate and seasonal variations, among other advantages in comparison to vegetable oils. In this study, a red yeast isolated from a mountain water source, identified as Rhodotorula glutinis T13, showed high potential for lipid production (40% w/w) with suitable growth parameters, yields, and fatty acids profile. Yeast lipids showed a high content of unsaturated fatty acids (56.44%; C18:1, C18:2), and the fuel properties (cetane number, iodine value, density, kinematic viscosity, etc.) of yeast oil analysed were in good agreement with international biodiesel standards. The results show that R. glutinis T13 can be used in the future as a promising microorganism for the commercial production of biodiesel.This publication was supported by grants from ANPCyT-Foncyt (to MJA PICT2015-1207, and PICT2018-1370; to SCV, PICT2016-3083), and from SCAIT-UNT (to MJA, PIUNT 26/D605).Peer reviewe
    corecore