568 research outputs found
Different environmental variables predict body and brain size evolution in Homo
Increasing body and brain size constitutes a key macro-evolutionary pattern in the hominin lineage, yet the mechanisms behind these changes remain debated. Hypothesized drivers include environmental, demographic, social, dietary, and technological factors. Here we test the influence of environmental factors on the evolution of body and brain size in the genus Homo over the last one million years using a large fossil dataset combined with global paleoclimatic reconstructions and formalized hypotheses tested in a quantitative statistical framework. We identify temperature as a major predictor of body size variation within Homo, in accordance with Bergmann’s rule. In contrast, net primary productivity of environments and long-term variability in precipitation correlate with brain size but explain low amounts of the observed variation. These associations are likely due to an indirect environmental influence on cognitive abilities and extinction probabilities. Most environmental factors that we test do not correspond with body and brain size evolution, pointing towards complex scenarios which underlie the evolution of key biological characteristics in later Homo.Introduction Results - Approach of power analysis and linear regressions - Power analysis of synthetic data - Analysis of fossil data Discussion Methods - Body and brain size database - Climate reconstructions - Synthetic datasets and power analysi
Significant reductions of host abundance weakly impact infection intensity of Batrachochytrium dendrobatidis
Infectious diseases are considered major threats to biodiversity, however strategies to mitigate their impacts in the natural world are scarce and largely unsuccessful. Chytridiomycosis is responsible for the decline of hundreds of amphibian species worldwide, but an effective disease management strategy that could be applied across natural habitats is still lacking. In general amphibian larvae can be easily captured, offering opportunities to ascertain the impact of altering the abundance of hosts, considered to be a key parameter affecting the severity of the disease. Here, we report the results of two experiments to investigate how altering host abundance affects infection intensity in amphibian populations of a montane area of Central Spain suffering from lethal amphibian chytridiomycosis. Our laboratory-based experiment supported the conclusion that varying density had a significant effect on infection intensity when salamander larvae were housed at low densities. Our field experiment showed that reducing the abundance of salamander larvae in the field also had a significant, but weak, impact on infection the following year, but only when removals were extreme. While this suggests adjusting host abundance as a mitigation strategy to reduce infection intensity could be useful, our evidence suggests only heavy culling efforts will succeed, which may run contrary to objectives for conservation
Repeatable group differences in the collective behaviour of stickleback shoals across ecological contexts.
Establishing how collective behaviour emerges is central to our understanding of animal societies. Previous research has highlighted how universal interaction rules shape collective behaviour, and that individual differences can drive group functioning. Groups themselves may also differ considerably in their collective behaviour, but little is known about the consistency of such group variation, especially across different ecological contexts that may alter individuals' behavioural responses. Here, we test if randomly composed groups of sticklebacks differ consistently from one another in both their structure and movement dynamics across an open environment, an environment with food, and an environment with food and shelter. Based on high-resolution tracking data of the free-swimming shoals, we found large context-associated changes in the average behaviour of the groups. But despite these changes and limited social familiarity among group members, substantial and predictable behavioural differences between the groups persisted both within and across the different contexts (group-level repeatability): some groups moved consistently faster, more cohesively, showed stronger alignment and/or clearer leadership than other groups. These results suggest that among-group heterogeneity could be a widespread feature in animal societies. Future work that considers group-level variation in collective behaviour may help understand the selective pressures that shape how animal collectives form and function
Alpine newts (Ichthyosaura alpestris) avoid habitats previously used by parasite exposed conspecifics
Many organisms avoid habitats posing risks of parasitism. Parasites are not generally conspicuous however, which raises the question of what cues individuals use to detect parasitism risk. Here, we provide evidence in alpine newts (Ichthyosaura alpestris) that non-visual cues from parasite-exposed conspecifics inform habitat avoidance. Alpine newts breed in aquatic habitats and occasionally move among adjacent terrestrial habitat during breeding seasons. We completed experiments with newts whereby individuals had access to both habitats, and the aquatic habitats varied in prior occupancy by conspecifics with different histories of exposure to the parasitic skin fungus, Batrachochytrium dendrobatidis (Bd). Continuous filming of newt activity for 2 days provided little evidence that prior use of aquatic habitats by conspecifics, regardless of their Bd exposure history, immediately influenced newt habitat use. However, newts that encountered aquatic habitats used specifically by Bd-exposed conspecifics on day 1 spent less time aquatic on day 2, whereas other newts did not alter habitat use. Responses could have been elicited by cues generated by Bd stages on the conspecifics or, perhaps more likely, cues emitted by the conspecifics themselves. In either case, these observations suggest that newts use non-visual cues sourced from exposed conspecifics to detect Bd risk and that those cues cause newts to avoid aquatic habitats. Bd may therefore influence host behaviour in early phases of interactions, and possibly before any contact with infectious stages is made, creating potential for non-consumptive effects
A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years.
Curated global climate data have been generated from climate model outputs for the last 120,000 years, whereas reconstructions going back even further have been lacking due to the high computational cost of climate simulations. Here, we present a statistically-derived global terrestrial climate dataset for every 1,000 years of the last 800,000 years. It is based on a set of linear regressions between 72 existing HadCM3 climate simulations of the last 120,000 years and external forcings consisting of CO2, orbital parameters, and land type. The estimated climatologies were interpolated to 0.5° resolution and bias-corrected using present-day climate. The data compare well with the original HadCM3 simulations and with long-term proxy records. Our dataset includes monthly temperature, precipitation, cloud cover, and 17 bioclimatic variables. In addition, we derived net primary productivity and global biome distributions using the BIOME4 vegetation model. The data are a relevant source for different research areas, such as archaeology or ecology, to study the long-term effect of glacial-interglacial climate cycles for periods beyond the last 120,000 years
Progresso da fusariose em espigas de triticale.
Editores técnicos: Joseani Mesquita Antunes, Ana LÃdia Variani Bonato, Márcia Barrocas Moreira Pimentel
- …