229 research outputs found

    A brief methodological note on chaos theory and its recent applications based on new computer resources

    Get PDF
    Chaos theory refers to the behaviour of certain deterministic nonlinear dynamical systems whose solutions, although globally stable, are locally unstable. These chaotic systems describe aperiodic, irregular, apparently random and erratic trajectories, i.e., deterministic complex dynamics. One of the properties that derive from this local instability and that allow characterizing these deterministic chaotic systems is their high sensitivity to small changes in the initial conditions, which can be measured by using the so-called Lyapunov exponents. The detection of chaotic behaviour in the underlying generating process of a time series has important methodological implications. When chaotic behaviour is detected, then it can be concluded that the irregularity of the series is not necessarily random, but the result of some deterministic dynamic process. Then, even if such process is unknown, it will be possible to improve the predictability of the time series and even to control or stabilize the evolution of the time series. This article provides a summary of the main current concepts and methods for the detection of chaotic behaviour from time series

    Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals

    Get PDF
    Developmental neurotoxicity (DNT) is a major safety concern for all chemicals of the human exposome. However, DNT data from animal studies are available for only a small percentage of manufactured compounds. Test methods with a higher throughput than current regulatory guideline methods, and with improved human relevance are urgently needed. We therefore explored the feasibility of DNT hazard assessment based on new approach methods (NAMs). An in vitro battery (IVB) was assembled from ten individual NAMs that had been developed during the past years to probe effects of chemicals on various fundamental neurodevelopmental processes. All assays used human neural cells at different developmental stages. This allowed us to assess disturbances of: (i) proliferation of neural progenitor cells (NPC); (ii) migration of neural crest cells, radial glia cells, neurons and oligodendrocytes; (iii) differentiation of NPC into neurons and oligodendrocytes; and (iv) neurite outgrowth of peripheral and central neurons. In parallel, cytotoxicity measures were obtained. The feasibility of concentration-dependent screening and of a reliable biostatistical processing of the complex multi-dimensional data was explored with a set of 120 test compounds, containing subsets of pre-defined positive and negative DNT compounds. The battery provided alerts (hit or borderline) for 24 of 28 known toxicants (82% sensitivity), and for none of the 17 negative controls. Based on the results from this screen project, strategies were developed on how IVB data may be used in the context of risk assessment scenarios employing integrated approaches for testing and assessment (IATA).European Food Safety Authority (EFSA-Q-2018-00308), the Danish Environmental Protection Agency (EPA), Denmark, under the grant number MST-667-00205, the State Ministry of Baden-Wuerttemberg, Germany, for Economic Affairs, Labour and Tourism (NAM-Accept), the project CERST (Center for Alternatives to Animal Testing) of the Ministry for culture and science of the State of North-Rhine Westphalia, Germany (file number 233–1.08.03.03- 121972/131–1.08.03.03–121972), the European Chemical Industry Council Long-Range Research Initiative (Cefic LRI) under the project name AIMT11 and the BMBF (NeuroTool). It has also received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No. 964537 (RISK-HUNT3R), No. 964518 (ToxFree), No. 101057014 (PARC) and No. 825759 (ENDpoiNTs)

    Analysis of Sentinel Node Biopsy and Clinicopathologic Features as Prognostic Factors in Patients With Atypical Melanocytic Tumors.

    Get PDF
    BACKGROUND: Atypical melanocytic tumors (AMTs) include a wide spectrum of melanocytic neoplasms that represent a challenge for clinicians due to the lack of a definitive diagnosis and the related uncertainty about their management. This study analyzed clinicopathologic features and sentinel node status as potential prognostic factors in patients with AMTs. PATIENTS AND METHODS: Clinicopathologic and follow-up data of 238 children, adolescents, and adults with histologically proved AMTs consecutively treated at 12 European centers from 2000 through 2010 were retrieved from prospectively maintained databases. The binary association between all investigated covariates was studied by evaluating the Spearman correlation coefficients, and the association between progression-free survival and all investigated covariates was evaluated using univariable Cox models. The overall survival and progression-free survival curves were established using the Kaplan-Meier method. RESULTS: Median follow-up was 126 months (interquartile range, 104-157 months). All patients received an initial diagnostic biopsy followed by wide (1 cm) excision. Sentinel node biopsy was performed in 139 patients (58.4%), 37 (26.6%) of whom had sentinel node positivity. There were 4 local recurrences, 43 regional relapses, and 8 distant metastases as first events. Six patients (2.5%) died of disease progression. Five patients who were sentinel node-negative and 3 patients who were sentinel node-positive developed distant metastases. Ten-year overall and progression-free survival rates were 97% (95% CI, 94.9%-99.2%) and 82.2% (95% CI, 77.3%-87.3%), respectively. Age, mitotic rate/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss were factors affecting prognosis in the whole series and the sentinel node biopsy subgroup. CONCLUSIONS: Age >20 years, mitotic rate >4/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss proved to be worse prognostic factors in patients with ATMs. Sentinel node status was not a clear prognostic predictor

    Mucopolysaccharidoses in northern Brazil: Targeted mutation screening and urinary glycosaminoglycan excretion in patients undergoing enzyme replacement therapy

    Get PDF
    Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients’ clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers

    Nomogram-based prediction of survival in patients with advanced oesophagogastric adenocarcinoma receiving first-line chemotherapy: a multicenter prospective study in the era of trastuzumab

    Get PDF
    Background: To develop and validate a nomogram and web-based calculator to predict overall survival (OS) in Caucasian-advanced oesophagogastric adenocarcinoma (AOA) patients undergoing first-line combination chemotherapy. Methods: Nine hundred twenty-four AOA patients treated at 28 Spanish teaching hospitals from January 2008 to September 2014 were used as derivation cohort. The result of an adjusted-Cox proportional hazards regression was represented as a nomogram and web-based calculator. The model was validated in 502 prospectively recruited patients treated between October 2014 and December 2016. Harrell's c-index was used to evaluate discrimination. Results: The nomogram includes seven predictors associated with OS: HER2-positive tumours treated with trastuzumab, Eastern Cooperative Oncology Group performance status, number of metastatic sites, bone metastases, ascites, histological grade, and neutrophil-to-lymphocyte ratio. Median OS was 5.8 (95% confidence interval (CI), 4.5–6.6), 9.4 (95% CI, 8.5–10.6), and 14 months (95% CI, 11.8–16) for high-, intermediate-, and low-risk groups, respectively (P<0.001), in the derivation set and 4.6 (95% CI, 3.3–8.1), 12.7 (95% CI, 11.3–14.3), and 18.3 months (95% CI, 14.6–24.2) for high-, intermediate-, and low-risk groups, respectively (P<0.001), in the validation set. The nomogram is well-calibrated and reveals acceptable discriminatory capacity, with optimism-corrected c-indices of 0.618 (95% CI, 0.591–0.631) and 0.673 (95% CI, 0.636–0.709) in derivation and validation groups, respectively. The AGAMENON nomogram outperformed the Royal Marsden Hospital (c-index=0.583; P=0.00046) and Japan Clinical Oncology Group prognostic indices (c-index=0.611; P=0.03351). Conclusions: We developed and validated a straightforward model to predict survival in Caucasian AOA patients initiating first-line polychemotherapy. This model can contribute to inform clinical decision-making and optimise clinical trial design
    • 

    corecore