208 research outputs found
Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems
In the limit of low viscosity, we show that the amplitude of the modes of
oscillation of a rotating fluid, namely inertial modes, concentrate along an
attractor formed by a periodic orbit of characteristics of the underlying
hyperbolic Poincar\'e equation. The dynamics of characteristics is used to
elaborate a scenario for the asymptotic behaviour of the eigenmodes and
eigenspectrum in the physically relevant r\'egime of very low viscosities which
are out of reach numerically. This problem offers a canonical ill-posed Cauchy
problem which has applications in other fields.Comment: 4 pages, 5 fi
Principle of Maximum Entropy Applied to Rayleigh-B\'enard Convection
A statistical-mechanical investigation is performed on Rayleigh-B\'enard
convection of a dilute classical gas starting from the Boltzmann equation. We
first present a microscopic derivation of basic hydrodynamic equations and an
expression of entropy appropriate for the convection. This includes an
alternative justification for the Oberbeck-Boussinesq approximation. We then
calculate entropy change through the convective transition choosing mechanical
quantities as independent variables. Above the critical Rayleigh number, the
system is found to evolve from the heat-conducting uniform state towards the
convective roll state with monotonic increase of entropy on the average. Thus,
the principle of maximum entropy proposed for nonequilibrium steady states in a
preceding paper is indeed obeyed in this prototype example. The principle also
provides a natural explanation for the enhancement of the Nusselt number in
convection.Comment: 13 pages, 4 figures; typos corrected; Eq. (66a) corrected to remove a
double counting for ; Figs. 1-4 replace
Recommended from our members
A practice-oriented model for pushover analysis of a class of timber-framed masonry buildings
Timber-Framed (TF) masonry is a structural system characterized by high complexity and diversity. Limited experimental and analytical research has been carried out so far to explore their earthquake response, partly due to the complexity of the problem and partly due to the scarcity of TF buildings across the world. Here, a new practice-oriented non-linear (NL) macro-model is presented for TF masonry structures, based on the familiar diagonal strut approach with NL axial hinges in the struts. The constitutive law for the hinges (axial force vs. axial deformation) is derived on the basis of an extensive parametric analysis of the main factors affecting the response of TF masonry panels subjected to horizontal loading. The parameters studied are related to the geometric features of the panel and the strength of wood as well as the connections of the timber elements. The parametric analysis is performed using a micro-model based on Hill-type plasticity and it is shown that in the studied X-braced walls the masonry infills do not make a significant contribution to the lateral load resistance. Empirical expressions are proposed for the yield and maximum displacement and shear of a horizontally loaded TF panel. The model is verified against available experimental data, and is found to capture well the envelopes of the experimental loops. The model is readily applicable to NL static analysis (pushover) analysis for the assessment of the lateral load capacity of TF masonry buildings, as the number of input parameters for deriving the constitutive law has been limited to only five
Bifurcations in annular electroconvection with an imposed shear
We report an experimental study of the primary bifurcation in
electrically-driven convection in a freely suspended film. A weakly conducting,
submicron thick smectic liquid crystal film was supported by concentric
circular electrodes. It electroconvected when a sufficiently large voltage
was applied between its inner and outer edges. The film could sustain rapid
flows and yet remain strictly two-dimensional. By rotation of the inner
electrode, a circular Couette shear could be independently imposed. The control
parameters were a dimensionless number , analogous to the Rayleigh
number, which is and the Reynolds number of the
azimuthal shear flow. The geometrical and material properties of the film were
characterized by the radius ratio , and a Prandtl-like number . Using measurements of current-voltage characteristics of a large number of
films, we examined the onset of electroconvection over a broad range of
, and . We compared this data quantitatively to
the results of linear stability theory. This could be done with essentially no
adjustable parameters. The current-voltage data above onset were then used to
infer the amplitude of electroconvection in the weakly nonlinear regime by
fitting them to a steady-state amplitude equation of the Landau form. We show
how the primary bifurcation can be tuned between supercritical and subcritical
by changing and .Comment: 17 pages, 12 figures. Submitted to Phys. Rev. E. Minor changes after
refereeing. See also http://mobydick.physics.utoronto.c
Determination of the Jet Energy Scale at the Collider Detector at Fermilab
A precise determination of the energy scale of jets at the Collider Detector
at Fermilab at the Tevatron collider is described. Jets are used in
many analyses to estimate the energies of partons resulting from the underlying
physics process. Several correction factors are developed to estimate the
original parton energy from the observed jet energy in the calorimeter. The jet
energy response is compared between data and Monte Carlo simulation for various
physics processes, and systematic uncertainties on the jet energy scale are
determined. For jets with transverse momenta above 50 GeV the jet energy scale
is determined with a 3% systematic uncertainty
Classical Monopoles: Newton, NUT-space, gravomagnetic lensing and atomic spectra
Stimulated by a scholium in Newton's Principia we find some beautiful results
in classical mechanics which can be interpreted in terms of the orbits in the
field of a mass endowed with a gravomagnetic monopole. All the orbits lie on
cones! When the cones are slit open and flattened the orbits are exactly the
ellipses and hyperbolae that one would have obtained without the gravomagnetic
monopole.
The beauty and simplicity of these results has led us to explore the similar
problems in Atomic Physics when the nuclei have an added Dirac magnetic
monopole. These problems have been explored by others and we sketch the
derivations and give details of the predicted spectrum of monopolar hydrogen.
Finally we return to gravomagnetic monopoles in general relativity. We
explain why NUT space has a non-spherical metric although NUT space itself is
the spherical space-time of a mass with a gravomagnetic monopole. We
demonstrate that all geodesics in NUT space lie on cones and use this result to
study the gravitational lensing by bodies with gravomagnetic monopoles.
We remark that just as electromagnetism would have to be extended beyond
Maxwell's equations to allow for magnetic monopoles and their currents so
general relativity would have to be extended to allow torsion for general
distributions of gravomagnetic monopoles and their currents. Of course if
monopoles were never discovered then it would be a triumph for both Maxwellian
Electromagnetism and General Relativity as they stand!Comment: 39 pages, 9 figures and 2 tables available on request from the
author
- …