113 research outputs found

    On the effects of mechanical stress of biological membranes in modeling of swelling dynamics of biological systems

    Get PDF
    We highlight mechanical stretching and bending of membranes and the importance of membrane deformations in the analysis of swelling dynamics of biological systems, including cells and subcellular organelles. Membrane deformation upon swelling generates tensile stress and internal pressure, contributing to volume changes in biological systems. Therefore, in addition to physical (internal/external) and chemical factors, mechanical properties of the membranes should be considered in modeling analysis of cellular swelling. Here we describe an approach that considers mechanical properties of the membranes in the analysis of swelling dynamics of biological systems. This approach includes membrane bending and stretching deformations into the model, producing a more realistic description of swelling. We also discuss the effects of membrane stretching on swelling dynamics. We report that additional pressure generated by membrane bending is negligible, compared to pressures generated by membrane stretching, when both membrane surface area and volume are variable parameters. Note that bending deformations are reversible, while stretching deformation may be irreversible, leading to membrane disruption when they exceed a certain threshold level. Therefore, bending deformations need only be considered in reversible physiological swelling, whereas stretching deformations should also be considered in pathological irreversible swelling. Thus, the currently proposed approach may be used to develop a detailed biophysical model describing the transition from physiological to pathological swelling mode.National Aeronautics & Space Administration (NASA):80NSSC19M0049; PR Space Grant (NASA):NNX15AI11Hinfo:eu-repo/semantics/publishedVersio

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains

    Full text link
    In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, S≄ΔIHS\geq \varepsilon I_{\mathcal{H}} for some Δ>0\varepsilon >0 in a Hilbert space H\mathcal{H} to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for HK,ΩH_{K,\Omega}, the Krein--von Neumann extension of the perturbed Laplacian −Δ+V-\Delta+V (in short, the perturbed Krein Laplacian) defined on C0∞(Ω)C^\infty_0(\Omega), where VV is measurable, bounded and nonnegative, in a bounded open set Ω⊂Rn\Omega\subset\mathbb{R}^n belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,rC^{1,r}, r>1/2r>1/2.Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    Get PDF
    Background: The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings: To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance: These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization

    No Need for a Cognitive Map: Decentralized Memory for Insect Navigation

    Get PDF
    In many animals the ability to navigate over long distances is an important prerequisite for foraging. For example, it is widely accepted that desert ants and honey bees, but also mammals, use path integration for finding the way back to their home site. It is however a matter of a long standing debate whether animals in addition are able to acquire and use so called cognitive maps. Such a ‘map’, a global spatial representation of the foraging area, is generally assumed to allow the animal to find shortcuts between two sites although the direct connection has never been travelled before. Using the artificial neural network approach, here we develop an artificial memory system which is based on path integration and various landmark guidance mechanisms (a bank of individual and independent landmark-defined memory elements). Activation of the individual memory elements depends on a separate motivation network and an, in part, asymmetrical lateral inhibition network. The information concerning the absolute position of the agent is present, but resides in a separate memory that can only be used by the path integration subsystem to control the behaviour, but cannot be used for computational purposes with other memory elements of the system. Thus, in this simulation there is no neural basis of a cognitive map. Nevertheless, an agent controlled by this network is able to accomplish various navigational tasks known from ants and bees and often discussed as being dependent on a cognitive map. For example, map-like behaviour as observed in honey bees arises as an emergent property from a decentralized system. This behaviour thus can be explained without referring to the assumption that a cognitive map, a coherent representation of foraging space, must exist. We hypothesize that the proposed network essentially resides in the mushroom bodies of the insect brain

    Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity

    Get PDF
    International audienceWe present a novel computational model that detects temporal configurations of a given human neuronal pathway and constructs its artificial replication. This poses a great challenge since direct recordings from individual neurons are impossible in the human central nervous system and therefore the underlying neuronal pathway has to be considered as a black box. For tackling this challenge, we used a branch of complex systems modeling called artificial self-organization in which large sets of software entities interacting locally give rise to bottom-up collective behaviors. The result is an emergent model where each software entity represents an integrate-and-fire neuron. We then applied the model to the reflex responses of single motor units obtained from conscious human subjects. Experimental results show that the model recovers functionality of real human neuronal pathways by comparing it to appropriate surrogate data. What makes the model promising is the fact that, to the best of our knowledge, it is the first realistic model to self-wire an artificial neuronal network by efficiently combining neuroscience with artificial self-organization. Although there is no evidence yet of the model's connectivity mapping onto the human connectivity, we anticipate this model will help neuroscientists to learn much more about human neuronal networks, and could also be used for predicting hypotheses to lead future experiments
    • 

    corecore