578 research outputs found

    Rank-based multi-scale entropy analysis of heart rate variability

    Get PDF
    The method of MultiScale Entropy (MSE) is an invaluable tool to quantify and compare the complexity of physiological time series at different time scales. Although MSE traditionally employs sample entropy to measure the unpredictability of each coarse-grained series, the same framework can be applied to other metrics. Here we investigate the use of a rank-based entropy measure within the MSE framework. Like in the traditional method, the series are studied in an embedding space of dimension m. The novel entropy assesses the unpredictability of the series quantifying the "amount of shuffling" that the ranks of the mutual distances between pairs of m-long vectors undergo when considering the next observation. The algorithm was tested on recordings from the Fantasia database in a time-varying fashion using non-overlapping 300-samples windows. The method was able to find statistically significant differences between young and healthy elderly subjects at 7 scales/time-windows after accounting for multiple comparisons using the Holm-Bonferroni correction. These promising results suggest the possibility of using this measure to perform a time-varying assessment of complexity with increased accuracy and temporal resolution

    Spatially fractional-order viscoelasticity, non-locality and a new kind of anisotropy

    Full text link
    Spatial non-locality of space-fractional viscoelastic equations of motion is studied. Relaxation effects are accounted for by replacing second-order time derivatives by lower-order fractional derivatives and their generalizations. It is shown that space-fractional equations of motion of an order strictly less than 2 allow for a new kind anisotropy, associated with angular dependence of non-local interactions between stress and strain at different material points. Constitutive equations of such viscoelastic media are determined. Explicit fundamental solutions of the Cauchy problem are constructed for some cases isotropic and anisotropic non-locality

    The periodic repolarization dynamics index identifies changes in ventricular repolarization oscillations associated with music-induced emotions

    Get PDF
    The effect of music on cardiovascular dynamics may be useful in a variety of clinical settings. The aim of this study was to assess whether listening to music characterized by different emotional valence affected ventricular periodic repolarization dynamics (PRD), a recently-proposed non-invasive index of sympathetic ventricular modulation. The 12 lead ECG was recorded in 71 healthy volunteers exposed to six 90 s excerpts of pleasant music and unpleasant acoustic stimuli as well as six 90 s intervals of silence. A 20 s interval was allowed between excerpts during which the participants were asked to evaluate the previous excerpt. A simulation study was carried out to assess the capability of the algorithm of tracking fast small changes in PRD. The simulation study shows that the algorithm implemented in this study has a time-frequency resolution sufficient to capture the fast dynamics observed in this study. PRD were higher during listening to both pleasant and unpleasant music than during silence. There was a (weak) trend for the PRD to be higher during listening to pleasant than unpleasant music that may indicate the existence of a (weak) interaction between the valence of music-induced emotions and sympathetic ventricular response. The PRD significantly increased during the 20 s interval in between conditions, possibly reflecting a sympathetic response to the evaluation task and/or to the expectation of the following excerpt

    Beat-to-beat variability of microvascular peripheral resistances assessed with a non-invasive approach

    Get PDF
    The pressure-flow relationship at peripheral level is non-invasively studied in human subjects: the impedance function and the beat-to-beat variability series of microvascular peripheral resistance are estimated. The frequency content of this variability signal is compared to those of more classical variability series at rest and during mild supine physical exercise

    Diffusion in multiscale spacetimes

    Get PDF
    We study diffusion processes in anomalous spacetimes regarded as models of quantum geometry. Several types of diffusion equation and their solutions are presented and the associated stochastic processes are identified. These results are partly based on the literature in probability and percolation theory but their physical interpretation here is different since they apply to quantum spacetime itself. The case of multiscale (in particular, multifractal) spacetimes is then considered through a number of examples and the most general spectral-dimension profile of multifractional spaces is constructed.Comment: 23 pages, 5 figures. v2: discussion improved, typos corrected, references adde

    Attitude toward prescription and clinical monitoring of lithium salts in a sample of Italian psychiatrists: preliminary data

    Get PDF
    Results of international prescribing patterns show that lithium prescription and biochemical drug monitoring seem to differ from a country to another. In spite of clear-cut supporting scientific evidence lithium monitoring is often disregarded, incorrectly used or underused. In Italy the trend of lithium prescriptions and biochemical monitoring is far from what suggested in guidelines; even if there's an impressive paucity of data about lithium monitoring and related iatrogenic risks in our country. In order to assess the current attitude in Italy toward lithium treatment in bipolar disorder we asked to a number of senior psychiatrists, working within the national territory, to fill a 34 items interview. Items were grouped in 8 domains, ranging from prescription pattern to therapeutic drug monitoring and other safety measures to prevent iatrogenic harm during lithium therapy. A preliminary analysis of the very first data, collected mainly in Tuscany, suggested that overall knowledge about lithium prescription and biochemical monitoring were good and the few critical topics found in this preliminary study may be addressed with an improvement in information about lithium therapy

    Ramanujan sums analysis of long-period sequences and 1/f noise

    Full text link
    Ramanujan sums are exponential sums with exponent defined over the irreducible fractions. Until now, they have been used to provide converging expansions to some arithmetical functions appearing in the context of number theory. In this paper, we provide an application of Ramanujan sum expansions to periodic, quasiperiodic and complex time series, as a vital alternative to the Fourier transform. The Ramanujan-Fourier spectrum of the Dow Jones index over 13 years and of the coronal index of solar activity over 69 years are taken as illustrative examples. Distinct long periods may be discriminated in place of the 1/f^{\alpha} spectra of the Fourier transform.Comment: 10 page
    • …
    corecore