Spatial non-locality of space-fractional viscoelastic equations of motion is
studied. Relaxation effects are accounted for by replacing second-order time
derivatives by lower-order fractional derivatives and their generalizations. It
is shown that space-fractional equations of motion of an order strictly less
than 2 allow for a new kind anisotropy, associated with angular dependence of
non-local interactions between stress and strain at different material points.
Constitutive equations of such viscoelastic media are determined. Explicit
fundamental solutions of the Cauchy problem are constructed for some cases
isotropic and anisotropic non-locality