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Abstract

The method of MultiScale Entropy (MSE) is an invalu-
able tool to quantify and compare the complexity of phys-
iological time series at different time scales. Although
MSE traditionally employs sample entropy to measure the
unpredictability of each coarse-grained series, the same
framework can be applied to other metrics.

Here we investigate the use of a rank-based entropy
measure within the MSE framework. Like in the traditional
method, the series are studied in an embedding space of di-
mension m. The novel entropy assesses the unpredictabil-
ity of the series quantifying the “amount of shuffling” that
the ranks of the mutual distances between pairs of m-long
vectors undergo when considering the next observation.

The algorithm was tested on recordings from the Fan-
tasia database in a time-varying fashion using non-
overlapping 300-samples windows. The method was able
to find statistically significant differences between young
and healthy elderly subjects at 7 scales/time-windows af-
ter accounting for multiple comparisons using the Holm-
Bonferroni correction.

These promising results suggest the possibility of using
this measure to perform a time-varying assessment of com-
plexity with increased accuracy and temporal resolution.

1. Introduction

Entropy is a measure of a system’s uncertainty and can
differentiate deterministic and stochastic systems. It is a
widely used method to assess the complexity of physi-
ological time-series with important applications in many
fields like cardiology, neurophysiology and human postu-
ral sway. The sample entropy (SE) — an important tool
to quantify the level of disorder of a time series [1] — has
achieved significant results detecting sepsis from neonatal
HR data [2] and diagnosing atrial fibrillation [3]. It can be
estimated from a finite-length time series {xi}Ni=1 as:

SE = − ln

(
A

B

)
(1)

where B is the total number of vectors vmi =
[xi, xi+1, ..., xi+m−1] of m consecutive points that lie
within a distance ρ, while A is the total number of seg-
ments ofm+1 points that are still within distance ρ. In this
context, the distance between two vectors is the maximum
absolute difference between their corresponding compo-
nents, i.e. the distance defined by the infinity norm. The
fraction A

B in (1) is an unbiased estimator of the condi-
tional probability:

P
(∥∥vm+1

i − vm+1
j

∥∥
∞ < ρ

∣∣∣ ∥∥vmi − vmj ∥∥∞ < ρ
)

≡ P
(
|xi+m − xj+m| < ρ

∣∣∣ ∥∥vmi − vmj ∥∥∞ < ρ
) (2)

where ρ = rσ and σ is the standard deviation of the series.
The normalized tolerance r is usually chosen in an interval
rmin < r < rmax. Most authors recommend rmin = 0.1
and rmax = 0.25 for the entropy analysis of heart-rate vari-
ability [4].

The multi-scale entropy (MSE) is a more recent method
proposed in [5][6]. It is based on sample entropy and com-
pares the complexity of physiological time series at dif-
ferent time scales. The MSE method constructs a coarse-
grained variant yτj of the original time series and computes
its entropy measure. The coarse-grained series is obtained
dividing the one-dimensional discrete time series into non-
overlapping windows of length equal to a scale factor τ ,
and averaging the data points within each window:

yτj =
1

τ

τ∑
i=1

x(j−1)τ+i, 1 ≤ j ≤ N/τ. (3)

The entropy measure is finally calculated for each coarse-
grained time series, obtaining the function SE(τ).

In this paper, we introduce a novel entropy metric based
on the ranking of mutual distances between pairs of m-
long vectors.

2. Methods

2.1. Rank-based entropy

A family of alternative entropy metrics can be defined
based on the “amount of shuffling” that the ranks of the
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mutual distances between pairs of m-long vectors undergo
when considering the next observation.

In this paper, we describe one of these metrics which can
be operationally defined in terms of the following steps.
We start by computing, for 1 ≤ i < j ≤ N −m, the
vectors of mutual distances:

dk(i,j) =
∥∥vmi − vmj ∥∥∞ (4)

d′k(i,j) = |xi+m − xj+m| (5)

where k = k(i, j) is the index assigned to each (i, j) pair,
with 1 ≤ k ≤ K = (N −m−1) (N −m)/2. We then
consider the vector dk and find the permutation π(k) such
that the vector sk = dπ(k) is sorted in ascending order.
Intuitively, if xi+m represents the next observation and vmi
the recent “history” (or state) of a deterministic system,1

pairs (vmi , v
m
j ) of close vectors should project into pairs of

close observations (xi+m, xj+m). As a consequence, the
vector s′k = d′π(k) should be almost sorted too. Conversely,
if the system is completely random, the distance between
pairs of state vectors should bear no information about the
closeness of the following observations, and the vector s′k
should be, in general, unsorted.

We quantify this idea into a concrete measure using the
notion of inversion count. Given a vector w, its inversion
count is the number of pairs of indices i and j such that
i < j and wi > wj . It represents a measure of the vec-
tor’s disorder and it coincides with the number of actions
(swaps) that a bubble sort algorithm needs to take to sort
the vector. In assessing the degree of disorder of s′k, we
are specifically interested in observation points that result
from pairs of close state vectors. Therefore, we determine
the largest index kρ satisfying skρ < ρ and then com-
pute the number I of inversions pairs (k1, k2) such that
k1 < kρ, k1 < k2, and s′k1 > s′k2 . Finally, we define the
new entropy as

RE = − ln

(
1− I

(2K − kρ − 1) kρ/2

)
. (6)

The role of the parameter r used to determine ρ = rσ is
different in RE than in SE. In a sense, rather than defining
a hard threshold for the distance between state vectors, r
determines the maximum rank of the set of distances that
will contribute to the final entropy measure. For this rea-
son, its choice is less critical than in the case of SE and we
simply set r = rmax = 0.25.

The new entropy can also be used within a multi-scale
framework simply by constructing coarse-grained versions
of the original time series as in (3) and computing the en-
tropy measure corresponding to each scale factor. In the
following we will show the application of this rank-based
MSE to short and noisy artificial data sets as well as to
real-world heart beat series.

1Assuming m is sufficiently long to capture the system’s dynamics.

2.2. Simulated signals

An effective entropy metric should be able to measure
the degree of predictability of a time series, and in par-
ticular to determine whether it was generated by a deter-
ministic or a stochastic system. Ideally, it should be able
to perform this assessment without resorting to the use of
other properties of the signal such as the probability distri-
bution of its values or the frequency spectrum. Secondly,
a robust metric should yield useful results even when the
system’s observations are corrupted by a small amount of
additive noise.

To test our algorithm we compared the entropy of a
given time series xi, generated from a deterministic sys-
tem in chaotic regime, with that of its surrogate generated
using the iAAFT algorithm [7], which has approximately
the same histogram and the same frequency spectrum am-
plitude but new uniformly random phases. Clearly, we ex-
pect the surrogate signal — which is stochastic — to have
a higher entropy than the original deterministic signal.

Because the entropy of a system is estimated from finite-
length time series, the resulting measure is affected by
statistical fluctuations. We generated M = 200 time se-
ries xmi of length N = 400 with different initial condi-
tions, and we computed the corresponding entropies RmE .
For each series, we also computed the surrogate series
{x̃mi } = iAAFT({xmi }) and its entropy R̃mE . Ideally, our
metric should report a difference between the entropy of
the surrogates and that of the original data which is sig-
nificantly larger than the intrinsic fluctuations due to the
finite-length estimation process. To quantify this desirable
property, we assessed the discrimination accuracy of our
entropy metric as:

a =
C
[
R̃mE

]
− C

[
RmE

]
D
[
R̃mE

]
+D

[
RmE

] (7)

where C[·] is a measure of central tendency while D[·] is
a measure of dispersion. If C[·] and D[·] are, respectively,
estimators of mean and standard deviation, the accuracy
a is the reciprocal of the Davies-Bouldin index, a widely
used metric for evaluating clustering algorithms. In our
case, we used the median as measure of central tendency
and 1.4826MAD[·] (median absolute deviation) as mea-
sure of dispersion.

To further validate the metric, we tested its robustness to
additive observation noise. Each series, xmi , was corrupted
with white Gaussian noise, nmi , and finally the entropy of
{xmi + nmi } and that of iAAFT({xmi + nmi }) were mea-
sured. We repeated the procedure for different values of
the signal-to-noise ratio (SNR).

The first type of signals that we used to test the novel



procedure was generated using the logistic map:

xn+1 = µxn(1− xn) (8)

where x0 is a real number in the interval [0, 1] and the
parameter µ is the rate of growth. We adopted the value
µ = 3.9 for which the map exhibits chaotic behaviour.

The second test was conducted on signals generated us-
ing the Lorenz flow:

dx

dt
= σ(y−x); dy

dt
= x(ρ− z)−y; dz

dt
= xy−βz (9)

with values σ = 10, β = 8
3 and ρ = 28 for which the dy-

namics evolve around a chaotic attractor. The time series
was obtained as xi = x(iδ) where the time lag δ = 0.6
was chosen using the autocorrelation function.

2.3. Real signals

We also tested our algorithm on real data from the “Fan-
tasia” database [8] which is publicly available from Phy-
sionet [9]. The series of NN intervals were further pre-
processed using an artifact removal filter based on the
“filt” function of the “hrv-toolkit” available on Physionet.
To break the artificial ties created by the 250Hz sam-
pling of the ECG, a random noise uniformly distributed in
[−2ms, 2ms] was added to the time series. Then, each sub-
ject’s NN series was divided in 15 non-overlapping time
windows of 300 samples each and the rank-based MSE
was independently computed for each time window.

3. Results

3.1. Simulation results

For the logistic map, the rank-based entropy gives a
value 0.130 ± 0.004 (C[·] ± D[·]) while for the surrogate
data it goes up to 0.546 ± 0.014. This corresponds to a
discrimination accuracy a ' 23, which is approximately
twice that obtained with the sample entropy a ' 12. This
improvement stands even in the presence of noise, as re-
ported in Fig. 1-left. Remarkably, the entropies computed
from the different realizations of the logistic map are well
separated from those of their surrogates even with a SNR
as low as 4.4 dB (i.e. when the standard deviation of the
noise is 60% that of the signal).

For the series generated from the Lorenz flow, the rank-
based entropy is 0.430±0.026 while for the surrogate data
it increases to 0.687±0.022. This leads to a discrimination
accuracy a ' 5.5 which is slightly lower than that of the
sample entropy a ' 6.5. When the series are contaminated
with noise, RE seems to perform slightly better than SE as
reported in Fig. 1-right.
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Figure 1: Discrimination accuracy index (see (7)) assess-
ing the ability of the two metrics (SE and RE) to detect the
increased entropy of the surrogate data compared to the
original series (logistic map on the left, Lorenz flow on the
right), as a function of the SNR.
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Figure 2: MSE computed using the conventional SE (left)
and using RE (right) for the logistic map and for the sur-
rogate data. The central thick line represents the median
while the thin lines report the first and third quartile of the
values obtained from the 200 realizations.

Finally, the full MSE plots computed using RE and us-
ing SE are reported in Fig. 2 and Fig. 3 for the logistic map
and for the Lorenz flow, respectively.

3.2. Real data results

The entropy values obtained with RE at scales 1 to 4 for
young and elderly subjects are reported in Fig. 4. We ob-
serve that the entropy of the elderly is generally lower than
that of young subjects, especially for scales 2 and higher,
as previously observed in [6]. At the single scale/time
level, the difference is statistically significant (p < 0.05,
using a Mann-Whitney U test) for 2 time windows at scale
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Figure 3: Same as Fig. 2, for the Lorenz flow.
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Figure 4: Entropy RE computed at scales 1 (bottom)
to 4 (top) on fifteen 300-samples windows. Each plot
shows the Median±1.4826MAD /

√
n for young (dotted

line) and elderly subjects (dashed line). The circles denote
scales/times for which the difference between young and
elderly subjects is statistically significant (p < 0.05). The
stars mark those that remain statistically significant after
accounting for multiple comparisons.

1, for 11 at scales 2 and 3, and for 5 at scale 4. If one is
interested in assessing a statistical difference between the
two age populations at all scales/times, it is worth noting
that a total of 7 differences remain statistically significant
even after accounting for multiple comparisons using the
Holm-Bonferroni correction.

Using the conventional MSE, instead, only for 14
time/scales out of 60 the differences between the two pop-
ulations are statistically significant. None of them remains
significant after accounting for multiple comparisons.

4. Conclusions

We presented a novel rank-based entropy measure
which can be used within a multi-scale framework. Tested
on simulated time series with known properties, the novel
metric showed a higher robustness to noise when distin-
guishing the output of a logistic map from its surrogate.
On real data, the rank-based MSE outperformed the con-
ventional one in finding statistically significant differences
between young and healthy elderly subjects using 300-
samples-long RR series. These encouraging results sug-
gest the possibility of using this measure to perform a time-
varying assessment of complexity with increased accuracy
and temporal resolution.
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