793 research outputs found

    Soft tissue structure modelling for use in orthopaedic applications and musculoskeletal biomechanics

    Get PDF
    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery

    An empirical application of stochastic volatility models

    Get PDF
    This paper studies the empirical performance of stochastic volatility models for twenty years of weekly exchange rate data for four major currencies. We concentrate on the effects of the distribution of the exchange rate innovations for both parameter estimates and for estimates of the latent volatility series. The density of the log of squared exchange rate innovations is modelled as a flexible mixture of normals. We use three different estimation techniques: quasi-maximum likelihood, simulated EM, and a Bayesian procedure. The estimated models are applied for pricing currency options. The major findings of the paper are that: (1) explicitly incorporating fat-tailed innovations increases the estimates of the persistence of volatility dynamics; (2) the estimation error of the volatility time series is very large; (3) this in turn causes standard errors on calculated option prices to be so large that these prices are rarely significantly different from a model with constant volatility

    Stochastic volatility and the distribution of exchange rate news

    Get PDF
    This paper studies the empirical performance of stochastic volatility models for twenty years of weekly exchange rate data. We concentrate on the effects of the distribution of the exchange rate innovations for parameter estimates and for estimates of the latent volatility series. We approximate the density of the log of exchange rate innovations by a mixture of normals. The major findings of the paper are that: (1) explicitly incorporating fat-tailed innovations increases the estimates of the persistence of volatility dynamics; (ii) estimates of the latent volatility series depend strongly on the estimation technique; (iii) the estimation error of the volatility time series is so large that finance applications to option pricing should be interpreted with care. We reach these conclusions using three different estimation techniques: quasi maximum likelihood, simulated EM, and a Bayesian procedure based on the Gibbs sampler.Foreign exchange rates

    Spectroscopic Detection of COClF in the Tropical and Mid-Latitude Lower Stratosphere

    Get PDF
    We report retrievals of COClF (carbonyl chlorofluoride) based on atmospheric chemistry experiment (ACE) solar occultation spectra recorded at tropical and mid-latitudes during 2004-2005. The COClF molecule is a temporary reservoir of both chlorine and fluorine and has not been measured previously by remote sensing. A maximum COClF mixing ratio of 99.7+/-48.0 pptv (10(exp -12) per unit volume, 1 sigma) is measured at 28km for tropical and subtropical occultations (latitudes below 20deg in both hemispheres) with lower mixing ratios at both higher and lower altitudes. Northern hemisphere mid-latitude mixing ratios (30-50degN) resulted in an average profile with a peak mixing ratio of 51.7+/-32.1 pptv, 1 sigma, at 27 km, also decreasing above and below that altitude. We compare the measured average profiles with the one reported set of in situ lower stratospheric mid-latitude measurements from 1986 and 1987, a previous two-dimensional (2-D) model calculation for 1987 and 1993, and a 2-D-model prediction for 2004. The measured average tropical profile is in close agreement with the model prediction; the northern mid-latitude profile is also consistent, although the peak in the measured profile occurs at a higher altitude (2.5-4.5km offset) than in the model prediction. Seasonal average 2-D-model predictions of the COClF stratospheric distribution for 2004 are also reported

    Size-Controlled Hapticity Switching in [Ln(C9H9)(C8H8)][Ln(C_{9}H_{9})(C_{8}H_{8})] Sandwiches

    Get PDF
    Sandwich complexes of lanthanides have recently attracted a considerable amount of interest due to their applications as Single Molecule Magnet (SMM). Herein, a comprehensive series of heteroleptic lanthanide sandwich complexes ligated by the cyclononatetraenyl (Cnt) and the cyclooctatetraenyl (Cot) ligand [Ln(Cot)(Cnt)] (Ln=Tb, Dy, Er, Ho, Yb, and Lu) is reported. The coordination behavior of the Cnt ligand has been investigated along the series and shows different coordination patterns in the solid-state depending on the size of the corresponding lanthanide ion without altering its overall anisotropy. Besides the characterization in the solid state by single-crystal X-ray diffraction and in solution by 1H^{1}H NMR, static magnetic studies and ab initio computational studies were performed

    Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    Get PDF
    Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E). These campaigns represent the first FTIR observations carried out at a southern (sub)tropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3) total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis) and at 2200 m a.s.l. (Maïdo). It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT) measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.Peer reviewe

    Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    Full text link
    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stations worldwide carry out reactive gases measurements with data reported to two World Data Centers. The reactive gases program in GAW cooperates The WMO GAW Reactive Gases Program with regional networks and other global monitoring initiatives in order to attain a complete picture of the tropospheric chemical composition. Observations are being made by in-situ monitoring, measurements from commercial routine air-crafts (e.g. IAGOS), column observations, and from flask sampling networks. Quality control and coordination of measurements between participating stations are a primary emphasis. GAW reactive gases data in rapid delivery mode are used to evaluate operational atmospheric composition forecasts in the EU Copernicus Atmospheric Monitoring Service. Oversight of the program is provided by GAW-WMO coordinated Reactive Gases Scientific Advisory Committee (RG-SAG)
    corecore