1,060 research outputs found

    Correlações entre características relacionadas ao temperamento em animais da raça Canchim.

    Get PDF
    O temperamento de um animal representa uma interação complexa entre seu genótipo e o ambiente ao qual está exposto. Medidas de temperamento diferentes e realizadas sob diferentes metodologias podem ser aplicadas aos programas de seleção. O objetivo do trabalho foi obter correlações fenotípicas e de ranking entre reatividade e escores de temperamento relacionados ao deslocamento e à tensão na balança de animais da raça Canchim pertencentes a um programa de melhoramento. Dados de 217 animais da safra 2012 foram avaliados à desmama, na balança, por meio de escores de deslocamento (DES10 e DES20) e de tensão (TEN10 e TEN20) aos 10 e aos 20 segundos e do número e intensidade de movimentos do animal (REAT) quantificados por meio de equipamento e software específicos. As correlações foram obtidas por meio do pacote estatístico SAS, tanto para os dados gerais, quanto por sexo e para os grupos de avaliação (de 1 a 4). De maneira geral, as correlações fenotípicas e de ranking entre REAT, TEN10, TEN20, DES10 e DES20 foram altas e positivas, indicando concordância entre as metodologias na avaliação de animais desmamados da raça Canchim. Outras avaliações serão realizadas em idades posteriores e até a finalização do projeto com outras safras, em 2017

    CLOVER - A new instrument for measuring the B-mode polarization of the CMB

    Full text link
    We describe the design and expected performance of Clover, a new instrument designed to measure the B-mode polarization of the cosmic microwave background. The proposed instrument will comprise three independent telescopes operating at 90, 150 and 220 GHz and is planned to be sited at Dome C, Antarctica. Each telescope will feed a focal plane array of 128 background-limited detectors and will measure polarized signals over angular multipoles 20 < l < 1000. The unique design of the telescope and careful control of systematics should enable the B-mode signature of gravitational waves to be measured to a lensing-confusion-limited tensor-to-scalar ratio r~0.005.Comment: 4 pages, 5 figures. To appear in the proceedings of the XXXVIXth Rencontres de Moriond "Exploring the Universe

    Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane

    Get PDF
    Planck is a European Space Agency (ESA) satellite, launched in May 2009, which will map the cosmic microwave background anisotropies in intensity and polarisation with unprecedented detail and sensitivity. It will also provide full-sky maps of astrophysical foregrounds. An accurate knowledge of the telescope beam patterns is an essential element for a correct analysis of the acquired astrophysical data. We present a detailed description of the optical design of the High Frequency Instrument (HFI) together with some of the optical performances measured during the calibration campaigns. We report on the evolution of the knowledge of the pre-launch HFI beam patterns when coupled to ideal telescope elements, and on their significance for the HFI data analysis procedure

    Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets

    Full text link
    We show that the quantum field theoretical formulation of the τ\tau-function theory has a geometrical interpretation within the classical transformation theory of conjugate nets. In particular, we prove that i) the partial charge transformations preserving the neutral sector are Laplace transformations, ii) the basic vertex operators are Levy and adjoint Levy transformations and iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that the bilinear identity for the multicomponent Kadomtsev-Petviashvili hierarchy becomes, through a generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations.Comment: 28 pages, 3 Postscript figure

    Scientific optimization of a ground-based CMB polarization experiment

    Get PDF
    We investigate the science goals achievable with the upcoming generation of ground-based Cosmic Microwave Background polarization experiments and calculate the optimal sky coverage for such an experiment including the effects of foregrounds. We find that with current technology an E-mode measurement will be sample-limited, while a B-mode measurement will be detector-noise-limited. We conclude that a 300 sq deg survey is an optimal compromise for a two-year experiment to measure both E and B-modes, and that ground-based polarization experiments can make an important contribution to B-mode surveys. Focusing on one particular experiment, QUaD, a proposed bolometric polarimeter operating from the South Pole, we find that a ground-based experiment can make a high significance measurement of the acoustic peaks in the E-mode spectrum, and will be able to detect the gravitational lensing signal in the B-mode spectrum. Such an experiment could also directly detect the gravitational wave component of the B-mode spectrum if the amplitude of the signal is close to current upper limits. We also investigate how a ground-based experiment can improve constraints on the cosmological parameters. We estimate that by combining two years of QUaD data with the four-year WMAP data, an optimized ground-based polarization experiment can improve constraints on cosmological parameters by a factor of two. If the foreground contamination can be reduced, the measurement of the tensor-to-scalar ratio can be improved by up to a factor of six over that obtainable from WMAP alone.Comment: 17 pages, 11 figures replaced with version accepted by MNRA

    Resistência à força cortante de vigas de concreto armado com seção transversal circular

    Get PDF
    A proposed adequation of NBR 6118, Item 7.4, related to shear strength of reinforced concrete beams is presented with aims to application on circular cross-section. The actual expressions are most suitable to rectangular cross-section and some misleading occurs when applied to circular sections at determination of VRd2, Vc and Vsw, as consequence of bw (beam width) and d (effective depth) definitions as well as the real effectiveness of circular stirrups. The proposed adequation is based on extensive bibliographic review and practical experience with a great number of infrastructure elements, such as anchored retaining pile walls, where the use of circular reinforced concrete members is frequent

    Conversion of the Mycotoxin Patulin to the Less Toxic Desoxypatulinic Acid by the Biocontrol Yeast Rhodosporidium kratochvilovae Strain LS11

    Get PDF
    Se describe en este artículo el descubrimiento de la degradación de la micotoxina patulina por una levaduraThe infection of stored apples by the fungus Penicillium expansum causes the contamination of fruits and fruit-derived products with the mycotoxin patulin, which is a major issue in food safety. Fungal attack can be prevented by beneficial microorganisms, so-called biocontrol agents. Previous time-course thin layer chromatography analyses showed that the aerobic incubation of patulin with the biocontrol yeast Rhodosporidium kratochvilovae strain LS11 leads to the disappearance of the mycotoxin spot and the parallel emergence of two new spots, one of which disappears over time. In this work, we analyzed the biodegradation of patulin effected by LS11 through HPLC. The more stable of the two compounds was purified and characterized by nuclear magnetic resonance as desoxypatulinic acid, whose formation was also quantitated in patulin degradation experiments. After R. kratochvilovae LS11 had been incubated in the presence of 13C-labeled patulin, label was traced to desoxypatulinic acid, thus proving that this compound derives from the metabolization of patulin by the yeast. Desoxypatulinic acid was much less toxic than patulin to human lymphocytes and, in contrast to patulin, did not react in vitro with the thiol-bearing tripeptide glutathione. The lower toxicity of desoxypatulinic acid is proposed to be a consequence of the hydrolysis of the lactone ring and the loss of functional groups that react with thiol groups. The formation of desoxypatulinic acid from patulin represents a novel biodegradation pathway that is also a detoxification process

    Climatological predictions of the auroral zone locations driven by moderate and severe space weather events

    Get PDF
    Auroral zones are regions where, in an average sense, aurorae due to solar activity are most likely spotted. Their shape and, similarly, the geographical locations most vulnerable to extreme space weather events (which we term ‘danger zones’) are modulated by Earth’s time-dependent internal magnetic field whose structure changes on yearly to decadal timescales. Strategies for mitigating ground-based space weather impacts over the next few decades can benefit from accurate forecasts of this evolution. Existing auroral zone forecasts use simplified assumptions of geomagnetic field variations. By harnessing the capability of modern geomagnetic field forecasts based on the dynamics of Earth’s core we estimate the evolution of the auroral zones and of the danger zones over the next 50 years. Our results predict that space-weather related risk will not change significantly in Europe, Australia and New Zealand. Mid-to-high latitude cities such as Edinburgh, Copenhagen and Dunedin will remain in high-risk regions. However, northward change of the auroral and danger zones over North America will likely cause urban centres such as Edmonton and Labrador City to be exposed by 2070 to the potential impact of severe solar activity

    Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet

    Full text link
    Many interesting problems in physics, chemistry, and computer science are equivalent to problems of interacting spins. However, most of these problems require computational resources that are out of reach by classical computers. A promising solution to overcome this challenge is to exploit the laws of quantum mechanics to perform simulation. Several "analog" quantum simulations of interacting spin systems have been realized experimentally. However, relying on adiabatic techniques, these simulations are limited to preparing ground states only. Here we report the first experimental results on a "digital" quantum simulation on thermal states; we simulated a three-spin frustrated magnet, a building block of spin ice, with an NMR quantum information processor, and we are able to explore the phase diagram of the system at any simulated temperature and external field. These results serve as a guide for identifying the challenges for performing quantum simulation on physical systems at finite temperatures, and pave the way towards large scale experimental simulations of open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary material
    corecore