4,236 research outputs found

    An estimate of the time variation of the O/H radial gradient from planetary nebulae

    Get PDF
    Radial abundance gradients are a common feature of spiral galaxies, and in the case of the Galaxy both the magnitude of the gradients and their variations are among the most important constraints of chemical evolution models. Planetary nebulae (PN) are particularly interesting objects to study the gradients and their variations. Owing to their bright emission spectra, they can be observed even at large galactocentric distances, and the derived abundances are relatively accurate, with uncertainties of about 0.1 to 0.2 dex, particularly for the elements that are not synthesized in their progenitor stars. On the other hand, as the offspring of intermediate mass stars, with main sequence masses in the interval of 1 to 8 solar masses, they are representative of objects with a reasonable age span. In this paper, we present an estimate of the time variation of the O/H radial gradient in a sample containing over 200 nebulae with accurate abundances. Our results are consistent with a flattening of the O/H gradient roughly from -0.11 dex/kpc to -0.06 dex/kpc during the last 9 Gyr, or from -0.08 dex/kpc to -0.06 dex/kpc during the last 5 Gyr.Comment: 9 pages, 7 encapsulated postscript figures, LaTeX, uses Astronomy and Astrophysics macro aa.cls, graphicx package, to be published in Astronomy and Astrophysics (2002), Also available at: http://www.astro.iag.usp.br/~macie

    The Electron Temperature Gradient in the Galactic Disk

    Get PDF
    We derive the electron temperature gradient in the Galactic disk using a sample of HII regions that spans Galactocentric distances 0--17 kpc. The electron temperature was calculated using high precision radio recombination line and continuum observations for more than 100 HII regions. Nebular Galactocentric distances were calculated in a consistent manner using the radial velocities measured by our radio recombination line survey. The large number of nebulae widely distributed over the Galactic disk together with the uniformity of our data provide a secure estimate of the present electron temperature gradient in the Milky Way. Because metals are the main coolants in the photoionized gas, the electron temperature along the Galactic disk should be directly related to the distribution of heavy elements in the Milky Way. Our best estimate of the electron temperature gradient is derived from a sample of 76 sources for which we have the highest quality data. The present gradient in electron temperature has a minimum at the Galactic Center and rises at a rate of 287 +/- 46 K/kpc. There are no significant variations in the value of the gradient as a function of Galactocentric radius or azimuth. The scatter we find in the HII region electron temperatures at a given Galactocentric radius is not due to observational error, but rather to intrinsic fluctuations in these temperatures which are almost certainly due to fluctuations in the nebular heavy element abundances. Comparing the HII region gradient with the much steeper gradient found for planetary nebulae suggests that the electron temperature gradient evolves with time, becoming flatter as a consequence of the chemical evolution of the Milky Way's disk.Comment: 43 pages, 9 figures (accepted for publication in the ApJ

    Analise semiotica de um ava (ambiente virtual de ensino aprendizagem) : características cts através da escada semotica de Stamper

    Get PDF
    Este artigo demonstra um estudo e aplicação da análise semiótica, para a avaliação de interfaces de ambientes virtuais de ensino-aprendizagem (AVA), de acordo com a escada semiótica de Stamper. Com base nas características CTS (Ciência,Tecnologia e Sociedade) encontrada nas camadas “degrais” da escada. Em específico, usamos a metodologia para qualidade de interfaces definida por Schimiguel, que instancia critérios de qualidade para cada uma das camadas da escada semiótica de Stamper. Com base nos resultados dessa investigação foi possível sugerir algumas recomendações nas seis camadas analisadas, sinalizando ainda para cada uma dessas recomendações um enfoque CTS, uma descrição que tem como propósito facilitar a implementação e otimização de AVAS

    Exact Effective action for (1+1)-dimensional fermions in an Abelian background at finite temperature and chemical potential

    Full text link
    In this paper we study the effects of a nonzero chemical potential in the effective action for massless fermions in (1+1) dimensions in an abelian gauge field background at finite temperature. We calculate the n-point function and show that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike the earlier calculation (in the absence of a chemical potential) odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of the chemical potential while the odd point functions are odd functions of it which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left and right handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory

    Sulfur, Chlorine, & Argon Abundances in Planetary Nebulae. I: Observations and Abundances in a Northern Sample

    Full text link
    This paper is the first of a series specifically studying the abundances of sulfur, chlorine, and argon in Type II planetary nebulae (PNe) in the Galactic disk. Ratios of S/O, Cl/O, and Ar/O constitute important tests of differential nucleosynthesis of these elements and serve as strict constraints on massive star yield predictions. We present new ground-based optical spectra extending from 3600-9600 Angstroms for a sample of 19 Type II northern PNe. This range includes the strong near infrared lines of [S III] 9069,9532, which allows us to test extensively their effectiveness as sulfur abundance indicators. We also introduce a new, model-tested ionization correction factor for sulfur. For the present sample, we find average values of S/O=1.2E-2(+/- 0.71E-2), Cl/O=3.3E-4(+/- 1.6E-4), and Ar/O=5.0E-3(+/- 1.9E-3).Comment: 44 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    Efeito de espaçamentos entre emissores e densidades de plantio no rendimento do melão irrigado por gotejamento superficial em vertissolo.

    Get PDF
    O objetivo do trabalho foi estudar o efeito de espaçamentos entre emissores (G) com diferentes densidades de plantio (P), no rendimento do melão irrigado por gotejamento superficial em Vertissolo

    Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way

    Get PDF
    This paper presents a homogeneous study of abundances in a sample of 79 northern galactic planetary nebulae whose morphological classes have been uniformly determined. Ionic abundances and plasma diagnostics were derived from selected optical line strengths in the literature, and elemental abundances were estimated with the Ionization Correction Factor developed by Kingsbourgh & Barlow (1994). We compare the elemental abundances to the final yields obtained from stellar evolution models of low-and intermediate-mass stars, and we confirm that most Bipolar planetary nebulae have high nitrogen and helium abundance, and are the likely progeny of stars with main-sequence mass larger than 3 solar masses. We derive =0.27, and discuss the implication of such a high ratio in connection with the solar neon abundance. We determine the galactic gradients of oxygen and neon, and found Delta log (O/H)/Delta R=-0.01 dex/kpc$ and Delta log (Ne/H)/Delta R=-0.01 dex/kpc. These flat PN gradients do not reconcile with galactic metallicity gradients flattening with time.Comment: The Astrophysical Journal, in pres
    corecore