96 research outputs found

    Healthcare use for acute gastrointestinal illness in two Inuit communities: Rigolet and Iqaluit, Canada

    Get PDF
    Background. The incidence of self-reported acute gastrointestinal illness (AGI) in Rigolet, Nunatsiavut, and Iqaluit, Nunavut, is higher than reported elsewhere in Canada; as such, understanding AGI-related healthcare use is important for healthcare provision, public health practice and surveillance of AGI. Objectives: This study described symptoms, severity and duration of self-reported AGI in the general population and examined the incidence and factors associated with healthcare utilization for AGI in these 2 Inuit communities. Design: Cross-sectional survey data were analysed using multivariable exact logistic regression to examine factors associated with individuals’ self-reported healthcare and over-the-counter (OTC) medication utilization related to AGI symptoms. Results: In Rigolet, few AGI cases used healthcare services [4.8% (95% CI=1.5-14.4%)]; in Iqaluit, some cases used healthcare services [16.9% (95% CI=11.2-24.7%)]. Missing traditional activities due to AGI (OR=3.8; 95% CI=1.18-12.4) and taking OTC medication for AGI symptoms (OR=3.8; 95% CI=1.2-15.1) were associated with increased odds of using healthcare services in Iqaluit. In both communities, AGI severity and secondary symptoms (extreme tiredness, headache, muscle pains, chills) were significantly associated with increased odds of taking OTC medication. Conclusions: While rates of self-reported AGI were higher in Inuit communities compared to non-Inuit communities in Canada, there were lower rates of AGI-related healthcare use in Inuit communities compared to other regions in Canada. As such, the rates of healthcare use for a given disease can differ between Inuit and non-Inuit communities, and caution should be exercised in making comparisons between Inuit and non-Inuit health outcomes based solely on clinic records and healthcare use

    An Inducible and Reversible Mouse Genetic Rescue System

    Get PDF
    Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications

    Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints

    Get PDF
    Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions

    Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

    Get PDF
    Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought

    Does Genetic Diversity Predict Health in Humans?

    Get PDF
    Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC), has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d2) at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d2) at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments

    Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods

    Get PDF
    Gibbons CL, Mangen M-JJ, Plaß D, et al. Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC Public Health. 2014;14(1): 147.Background: Efficient and reliable surveillance and notification systems are vital for monitoring public health and disease outbreaks. However, most surveillance and notification systems are affected by a degree of underestimation (UE) and therefore uncertainty surrounds the 'true' incidence of disease affecting morbidity and mortality rates. Surveillance systems fail to capture cases at two distinct levels of the surveillance pyramid: from the community since not all cases seek healthcare (under-ascertainment), and at the healthcare-level, representing a failure to adequately report symptomatic cases that have sought medical advice (underreporting). There are several methods to estimate the extent of under-ascertainment and underreporting. Methods: Within the context of the ECDC-funded Burden of Communicable Diseases in Europe (BCoDE)-project, an extensive literature review was conducted to identify studies that estimate ascertainment or reporting rates for salmonellosis and campylobacteriosis in European Union Member States (MS) plus European Free Trade Area (EFTA) countries Iceland, Norway and Switzerland and four other OECD countries (USA, Canada, Australia and Japan). Multiplication factors (MFs), a measure of the magnitude of underestimation, were taken directly from the literature or derived (where the proportion of underestimated, under-ascertained, or underreported cases was known) and compared for the two pathogens. Results: MFs varied between and within diseases and countries, representing a need to carefully select the most appropriate MFs and methods for calculating them. The most appropriate MFs are often disease-,country-, age-, and sex-specific. Conclusions: When routine data are used to make decisions on resource allocation or to estimate epidemiological parameters in populations, it becomes important to understand when, where and to what extent these data represent the true picture of disease, and in some instances (such as priority setting) it is necessary to adjust for underestimation. MFs can be used to adjust notification and surveillance data to provide more realistic estimates of incidence
    • …
    corecore