495 research outputs found
High Performance Technology in Algorithmic Cryptography
Alan Turing’s article, “Computation and intelligence”, gives the preamble of the characteristics of guessing if it is a machine or another human being. Currently, the use of ubiquitous technologies, such as the use of firmware, allows direct access to analog data, however, we must find a way to secure the information. Analyzing cryptographic algorithms for the transfer of multimedia information. Raise the use of cryptarithmetic. Finite automata will be developed that will govern the logic of the cryptographic algorithms to be integrated into Firmware, performance tests and controls will be carried out to determine the best strategies for their performance and algorithmic complexity. Technologies are expressed that allow the creation of learning environments, such as neural networks, that support other processes as the recognition of patterns on images
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
Experimental Passage of St. Louis Encephalitis Virus In Vivo in Mosquitoes and Chickens Reveals Evolutionarily Significant Virus Characteristics
St. Louis encephalitis virus (SLEV; Flaviviridae, flavivirus) was the major cause of epidemic flaviviral encephalitis in the U.S. prior to the introduction of West Nile virus (WNV) in 1999. However, outbreaks of SLEV have been significantly more limited then WNV in terms of levels of activity and geographic dispersal. One possible explanation for these variable levels of activity is that differences in the potential for each virus to adapt to its host cycle exist. The need for arboviruses to replicate in disparate hosts is thought to result in constraints on both evolution and host-specific adaptation. If cycling is the cause of genetic stability observed in nature and arboviruses lack host specialization, then sequential passage should result in both the accumulation of mutations and specialized viruses better suited for replication in that host. Previous studies suggest that WNV and SLEV differ in capacity for both genetic change and host specialization, and in the costs each accrues from specializing. In an attempt to clarify how selective pressures contribute to epidemiological patterns of WNV and SLEV, we evaluated mutant spectra size, consensus genetic change, and phenotypic changes for SLEV in vivo following 20 sequential passages via inoculation in either Culex pipiens mosquitoes or chickens. Results demonstrate that the capacity for genetic change is large for SLEV and that the size of the mutant spectrum is host-dependent using our passage methodology. Despite this, a general lack of consensus change resulted from passage in either host, a result that contrasts with the idea that constraints on evolution in nature result from host cycling alone. Results also suggest that a high level of adaptation to both hosts already exists, despite host cycling. A strain significantly more infectious in chickens did emerge from one lineage of chicken passage, yet other lineages and all mosquito passage strains did not display measurable host-specific fitness gains. In addition, increased infectivity in chickens did not decrease infectivity in mosquitoes, which further contrasts the concept of fitness trade-offs for arboviruses
Binding of Pramipexole to Extrastriatal Dopamine D2/D3 Receptors in the Human Brain: A Positron Emission Tomography Study Using 11C-FLB 457
The purpose of this study was to determine the binding sites of pramipexole in extrastriatal dopaminergic regions because its antidepressive effects have been speculated to occur by activating the dopamine D2 receptor subfamily in extrastriatal areas. Dynamic positron emission tomography (PET) scanning using 11C-FLB 457 for quantification of D2/D3 receptor subtype was performed on 15 healthy volunteers. Each subject underwent two PET scans before and after receiving a single dose of pramipexole (0, 0.125, or 0.25 mg). The study demonstrated that pramipexole significantly binds to D2/D3 receptors in the prefrontal cortex, amygdala, and medial and lateral thalamus at a dose of 0.25 mg. These regions have been indicated to have some relation to depression and may be part of the target sites where pramipexole exerts its antidepressive effects
Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera
Up to 20% of patients with polycythemia vera have karyotypic abnormalities at the time of the initial diagnosis. However, the cytogenetic abnormalities in polycythemia vera have not been well characterized and their prognostic impact is largely unknown. In this study, we aimed to address these issues using a large cohort of polycythemia vera patients with cytogenetic information available. The study included 422 patients, 271 in polycythemic phase, 112 with post-polycythemic myelofibrosis, 11 in accelerated phase, and 28 in blast phase. Abnormal karyotypes were detected in 139 (33%) patients, ranging from 20% in those in the polycythemic phase to 90% among patients in accelerated/blast phase. Different phases harbored different abnormalities: isolated del(20q), +8 and +9 were the most common abnormalities in the polycythemic phase; del(20q) and +1q were the most common abnormalities in post-polycythemic myelofibrosis; and complex karyotypes were the most common karyotypes in accelerated and blast phases. Patients with an abnormal karyotype showed a higher frequency of disease progression, a shorter transformation-free survival and an inferior overall survival compared with patients with a normal karyotype in the same disease phase. Cytogenetics could be effectively stratified into three risk groups, low- (normal karyotype, sole +8, +9 and other single abnormality), intermediate- (sole del20q, +1q and other two abnormalities), and high-risk (complex karyotype) groups. We conclude that cytogenetic changes in polycythemia vera vary in different phases of disease, and carry different prognostic impacts
Dysregulation of the mTOR Pathway Mediates Impairment of Synaptic Plasticity in a Mouse Model of Alzheimer's Disease
Background: The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase that plays a pivotal role in multiple fundamental biological processes, including synaptic plasticity. We explored the relationship between the mTOR pathway and b-amyloid (Ab)-induced synaptic dysfunction, which is considered to be critical in the pathogenesis of Alzheimer’s disease (AD). Methodology/Principal Findings: We provide evidence that inhibition of mTOR signaling correlates with impairment in synaptic plasticity in hippocampal slices from an AD mouse model and in wild-type slices exposed to exogenous Ab1-42. Importantly, by up-regulating mTOR signaling, glycogen synthase kinase 3 (GSK3) inhibitors rescued LTP in the AD mouse model, and genetic deletion of FK506-binding protein 12 (FKBP12) prevented Ab-induced impairment in long-term potentiation (LTP). In addition, confocal microscopy demonstrated co-localization of intraneuronal Ab42 with mTOR. Conclusions/Significance: These data support the notion that the mTOR pathway modulates Ab-related synaptic dysfunctio
Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis)
Flatfish species seem to require dietary taurine for normal growth and development. Although dietary taurine supplementation has been recommended for flatfish, little is known about the mechanisms of taurine absorption in the digestive tract of flatfish throughout ontogeny. This study described the cloning and ontogenetic expression of the taurine transporter (TauT) in the flatfish Senegalese sole (Solea senegalensis). Results showed a high similarity between TauT in Senegalese sole and other vertebrates, but a change in TauT amino acid sequences indicates that taurine transport may differ between mammals and fish, reptiles or birds. Moreover, results showed that Senegalese sole metamorphosis is an important developmental trigger to promote taurine transport in larvae, especially in muscle tissues, which may be important for larval growth. Results also indicated that the capacity to uptake dietary taurine in the digestive tract is already established in larvae at the onset of metamorphosis. In Senegalese sole juveniles, TauT expression was highest in brain, heart and eye. These are organs where taurine is usually found in high concentrations and is believed to play important biological roles. In the digestive tract of juveniles, TauT was more expressed in stomach and hindgut, indicating that dietary taurine is quickly absorbed when digestion begins and taurine endogenously used for bile salt conjugation may be recycled at the posterior end of the digestive tract. Therefore, these results suggest an enterohepatic recycling pathway for taurine in Senegalese sole, a process that may be important for maintenance of the taurine body levels in flatfish species
Abnormality in glutamine-glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study
Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-D-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N = 28; age- and gender-matched comparison group, N = 19) at baseline and 3-year follow-up (MDD group, N = 19; comparison group, N = 17). CSF levels of glutamine, glutamate, glycine, L-serine and D-serine were measured by highperformance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine–glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression
- …