52 research outputs found

    Resolving power of diffraction imaging with an objective: a numerical study

    Get PDF
    Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 μm or larger in diameters and double spheres separated by less than 300 nm between their centers.ECU Open Access Publishing Fun

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Anapole nanolasers for mode-locking and ultrafast pulse generation

    Get PDF
    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry

    Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nano-Red Blood Cells

    Get PDF
    Morphologically discrete nanoarchitectures, which mimic the structural complexity of biological systems, are an increasingly popular design paradigm in the development of new nanomedical technologies. Herein, engineered polymeric stomatocytes are presented as a structural and functional mimic of red blood cells (RBCs) with multifunctional therapeutic features. Stomatocytes, comprising biodegradable poly(ethylene glycol) block-poly(D,L-lactide), possess an oblate-like morphology reminiscent of RBCs. This unique dual-compartmentalized structure is augmented via encapsulation of multifunctional cargo (oxygen-binding hemoglobin and the photosensitizer chlorin e6). Furthermore, stomatocytes are decorated with a cell membrane isolated from erythrocytes to ensure that the surface characteristics matched those of RBCs. In vivo biodistribution data reveal that both the uncoated and coated nano-RBCs have long circulation times in mice, with the membrane-coated ones outperforming the uncoated stomatoctyes. The capacity of nano-RBCs to transport oxygen and create oxygen radicals upon exposure to light is effectively explored toward photodynamic therapy, using 2D and 3D tumor models; addressing the challenge presented by cancer-induced hypoxia. The morphological and functional control demonstrated by this synthetic nanosystem, coupled with indications of therapeutic efficacy, constitutes a highly promising platform for future clinical application.</p
    corecore