27,674 research outputs found
Parton Sum Rules and Improved Scaling Variable
The effect from quark masses and transversal motion on the Gottfried,
Bjorken, and Ellis-Jaffe sum rules is examined by using a quark-parton model of
nucleon structure functions based on an improved scaling variable. Its use
results in corrections to the Gottfried, Bjorken, and Ellis-Jaffe sum rules. We
use the Brodsky-Huang-Lepage prescription of light-cone wavefunctions to
estimate the size of the corrections. We constrain our choice of parameters by
the roughly known higher twist corrections to the Bjorken sum rule and find
that the resulting corrections to the Gottfried and Ellis-Jaffe sum rules are
relevant, though not large enough to explain the observed sum rule violations.Comment: latex, with 1 postscript figure, to be published in Phys.Lett.
The groupoidal analogue Theta~ to Joyal's category Theta is a test category
We introduce the groupoidal analogue \tilde\Theta to Joyal's cell category
\Theta and we prove that \tilde\Theta is a strict test category in the sense of
Grothendieck. This implies that presheaves on \tilde\Theta model homotopy types
in a canonical way. We also prove that the canonical functor from \Theta to
\tilde\Theta is aspherical, again in the sense of Grothendieck. This allows us
to compare weak equivalences of presheaves on \tilde\Theta to weak equivalences
of presheaves on \Theta. Our proofs apply to other categories analogous to
\Theta.Comment: 41 pages, v2: references added, Remark 7.3 added, v3: metadata
update
Pion-photon and photon-pion transition form factors in light-cone formalism
We derive the minimal Fock-state expansions of the pion and the photon wave
functions in light-cone formalism, then we calculate the pion-photon and the
photon-pion transition form factors of and
processes by employing these
quark-antiquark wave functions of the pion and the photon. We find that our
calculation for the transition form factor
agrees with the experimental data at low and moderately high energy scale.
Moreover, the physical differences and inherent connections between the
transition form factors of and have been illustrated, which indicate that these
two physical processes are intrinsically related. In addition, we also discuss
the form factor and the decay width at .Comment: 20 pages, 2 figure
HYBRIDJOIN for near-real-time Data Warehousing
An important component of near-real-time data warehouses is the near-real-time integration layer. One important element in near-real-time data integration is the join of a continuous input data stream with a diskbased relation. For high-throughput streams, stream-based algorithms, such as Mesh Join (MESHJOIN), can be used. However, in MESHJOIN the performance of the algorithm is inversely proportional to the size of disk-based relation. The Index Nested Loop Join (INLJ) can be set up so that it processes stream input, and can deal with intermittences in the update stream but it has low throughput. This paper introduces a robust stream-based join algorithm called Hybrid Join (HYBRIDJOIN), which combines the two approaches. A theoretical result shows that HYBRIDJOIN is asymptotically as fast as the fastest of both algorithms. The authors present performance measurements of the implementation. In experiments using synthetic data based on a Zipfian distribution, HYBRIDJOIN performs significantly better for typical parameters of the Zipfian distribution, and in general performs in accordance with the theoretical model while the other two algorithms are unacceptably slow under different settings
Recommended from our members
Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P
Sivers function in light-cone quark model and azimuthal spin asymmetries in pion electroproduction
We perform a calculation of Sivers function in a light-cone SU(6)
quark-diquark model with both scalar diquark and vector diquark spectators. We
derive the transverse momentum dependent light-cone wave function of the proton
by taking into account the Melosh-Wigner rotation. By adopting one-gluon
exchange, we obtain a non-vanishing Sivers function of quark from
interference of proton spin amplitudes. We analyze the
weighted Sivers asymmetries in , and electroproduction
off transverse polarized proton target, averaged and not averaged by the
kinematics of HERMES experiment.Comment: 17 LaTex pages, 2 figures. Final version for journal publicatio
Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia
As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30–40%
Monte Carlo calculation of the linear resistance of a three dimensional lattice Superconductor model in the London limit
We have studied the linear resistance of a three dimensional lattice
Superconductor model in the London limit London lattice model by Monte Carlo
simulation of the vortex loop dynamics. We find excellent finite size scaling
at the phase transition. We determine the dynamical exponent for the
isotropic London lattice model.Comment: 4 pages, RevTeX with 3 postscript figures include
Recommended from our members
Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment
- …
