9 research outputs found

    Fish Oil Finishing Diet Maintains Optimal n-3 Long-Chain Fatty Acid Content in European Whitefish (Coregonus lavaretus)

    No full text
    This study examined the effect of substituting vegetable oil for fish oil in feed, with subsequent re-introduction of fish oil-rich feed (finishing feeding) in late stages of growth, on the fatty acids of cultivated European whitefish (Coregonus lavaretus). Restorative finishing feeding with fish oil-rich feed for 15 and 25 weeks was sufficient to change the total content of nutritionally valuable long-chain n-3 fatty acids, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), to correspond to that of fish fed the fish oil-rich feed throughout their lifespan. Under natural conditions, 15 and 25 weeks correspond to weight gains of 75% and 100% (i.e. doubling), respectively. Also, the fatty acid profile of the fish was restored after finishing periods of 15 and 25 weeks. Limiting the use of fish oil by lowering the overall fat content of the feed (no vegetable oil added) resulted in a decrease in the long-chain n-3 fatty acids. Based on the results, after receiving a vegetable oil-rich diet, restorative fish oil-rich feeding in the last stages of growth in European whitefish is nutritionally justified in order to balance nutritional gain for consumers with sustainable use of finite marine oils. The results encourage commercial efforts to further utilize and optimize finishing feeding practices.201

    Physiological management of dietary deficiency in n-3 fatty acids by spawning Gulf killifish (Fundulus grandis)

    No full text
    Lipid dynamics of spawning fish are critical to the production of viable embryos and larvae. The present study utilized manipulation of dietary fatty acid (FA) profiles to examine the ability of spawning Gulf killifish (Fundulus grandis) to mobilize critical lipid components from somatic reserves or synthesize long-chain polyunsaturated FAs (LC-PUFAs) de novo from shorter-chain C18 precursors. An egg and multi-tissue evaluation of changes in FA concentrations across time after fish were switched from LC-PUFA-rich to LC-PUFA-deficient experimental diets was employed. The two experimental diets contained lipid sources which differed drastically in n-3 C18 FA content but had similar levels of n-6 C18 FAs. Discrete effects of dietary n-3 FAs can be analyzed because n-3 and n-6 represent distinct metabolic families which cannot be exchanged in vivo. Results indicate that a combination of mobilization and de novo synthesis is likely utilized to maintain physiologically required FA levels in critical tissues and embryos. Mobilization was supported by decreases in LC-PUFAs in somatic tissues and decreases in intraperitoneal fat content and liver mass. Evidence for biosynthesis was provided by a higher level of n-3 LC-PUFAs in the liver and ova of fish fed diets containing n-3 C18 precursors versus those fed diets with low levels of precursor FAs. The characteristic physiological plasticity of Gulf killifish is exemplified in the nutritional domain by its management of dietary FA deficiency

    Dietary Oil Source and Selenium Supplementation Modulate Fads2 and Elovl5 Transcriptional Levels in Liver and Brain of Meagre (Argyrosomus regius)

    No full text
    The meagre (Argyrosomus regius) is taking on increasing importance in the aquaculture industry. In view of the limited supply of fish oil (FO) as a feed ingredient, the study of the capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from alternative dietary oil sources is important. We analyzed changes in fatty acid (FA) desaturase 2 (fads2) and FA elongase 5 (elovl5) mRNA levels in livers and brains in response to FO replacement with a blend of vegetable oils (VO) and selenium (Se) supplementation. Fish were fed for 60 days with either a diet containing FO or a diet including VO, each supplemented or not with organic Se. Results showed that fads2 and elovl5 transcription was higher in liver when fish were fed VO diets. The brain mRNA levels of both genes were not affected by the dietary replacement of FO by VO. FA composition in the liver and skeletal muscle was altered by FO replacement, particularly by decreasing eicosapentaenoic acid and docosahexaenoic acid contents. The α-linolenic, linoleic, and arachidonic acid contents increased in both liver and brain of fish fed VO diets. The effect of Se supplementation on lipid metabolism was evident only in fish fed FO, showing a decrease in the transcription of hepatic fads2. Results indicate that the total replacement of FO by VO in diets modulates the expression of genes involved in LC-PUFA biosynthesis in meagre, affecting the FA profile of the fish flesh.Fil: Silva Brito, Francisca. Universidad de Porto; PortugalFil: Magnoni, Leonardo Julián. Universidad de Porto; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Fonseca, Sthelio Braga. Universidade Federal da Paraíba; Brasil. Universidade Federal de Campina Grande; BrasilFil: Peixoto, Maria João. Universidad de Porto; PortugalFil: Castro, L. Filipe C.. Universidad de Porto; PortugalFil: Cunha, Isabel. Universidad de Porto; PortugalFil: de Almeida Ozório, Rodrigo Otávio. Universidad de Porto; PortugalFil: Magalhães, Fernando Antunes. Universidad de Porto; PortugalFil: Magalhães Gonçalves, José Fernando. Universidad de Porto; Portuga
    corecore