17 research outputs found

    Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known.</p> <p>Methods</p> <p>We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children.</p> <p>Results</p> <p>SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups.</p> <p>Conclusion</p> <p>Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.</p

    Improved lung preservation relates to an increase in tubular myelin-associated surfactant protein A

    Get PDF
    BACKGROUND: Declining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury. We hypothesized that the previously described preservation-dependent improvement of alveolar surfactant integrity after IR was associated with alterations in intraalveolar SP-A levels. METHODS: Using immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior. RESULTS: After IR, labelling of tubular myelin for intraalveolar SP-A was significantly increased. In lungs preserved with EuroCollins, the total amount of intracellular surfactant phospholipid was reduced, and infiltration by PMNs and alveolar macrophages was significantly increased. With Celsior no changes in infiltration or intracellular surfactant phospholipid amount occurred. Here, an increase in the number of lamellar bodies per cell was associated with a shift towards smaller lamellar bodies. This accounts for preservation-dependent changes in the balance between surfactant phospholipid secretion and synthesis as well as in inflammatory cell infiltration. CONCLUSION: We suggest that enhanced release of surfactant phospholipids and SP-A represents an early protective response that compensates in part for the inactivation of intraalveolar surfactant in the early phase of IR injury. This beneficial effect can be supported by adequate lung preservation, as e.g. with Celsior, maintaining surfactant integrity and reducing inflammation, either directly (via antioxidants) or indirectly (via improved surfactant integrity)

    Moderate cholecalciferol supplementation depresses intestinal calcium absorption in growing dogs

    No full text
    Hormonal regulation of calcium (Ca) absorption was investigated in a cholecalciferol (vitamin D3)supplemented group (hVitD) vs. a control group (cVitD) of growing Great Danes (100 vs. 12.5 μg vitamin D3/kg diet). Although Ca intakes did not differ, fractional Ca absorption was significantly lower in the hVitD group than in the cVitD group. There were no differences in plasma concentrations of Ca, inorganic phosphate, parathyroid hormone, growth hormone or insulin-like growth factor I between groups. Plasma 25-hydroxycholecalciferol [25(OH)D3] concentrations were maintained in the hVitD dogs at the same levels as in the cVitD dogs due to increased turnover of 25(OH)D3 into 24,25-dihydroxycholecalciferol [24,25(OH)2D3] and 1,25-dihydroxycholecalciferol [1,25(OH)2D3]. In hVitD dogs, the greater plasma 24,25(OH)2D3 concentration and the enhanced metabolic clearance rate (MCR) of 1,25(OH)2D3 indicated upregulated 24-hydroxylase activity. The increased MCR of 1,25(OH)2D3 decreased plasma 1,25(OH)2D3 concentrations. In hVitD dogs, the greater production rate of 1,25(OH)2D3 was consistent with the 12.9-fold greater renal 1 α-hydroxylase gene expression compared with cVitD dogs and compensated to a certain extent for the accelerated MCR of 1,25(OH)2D3. The moderately decreased plasma 1,25(OH)2D3 concentration can only partially explain the decreased Ca absorption in the hVitD dogs. Intestinal vitamin D receptor concentrations did not differ between groups and did not account for the decreased Ca absorption. We suggest that 24,25(OH)2D3 may downregulate Ca absorption. Chemicals/CAS: 25-Hydroxyvitamin D3 1-alpha-Hydroxylase, EC 1.14.-; Calcitriol, 32222-06-3; Calcium Radioisotopes; Calcium, 7440-70-2; Calcium, Dietary; Cholecalciferol, 67-97-0; Cytochrome P-450 Enzyme System, 9035-51-2; Phosphates; Receptors, Calcitriol; Steroid Hydroxylases, EC 1.14.-; vitamin D 24-hydroxylase, EC 1.14.

    Calcium Ions as “Miscibility Switch”: Colocalization of Surfactant Protein B with Anionic Lipids under Absolute Calcium Free Conditions

    Get PDF
    One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL4 with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL4 colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL4 is not hampered. However, in the case of KL4, distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a “miscibility switch” in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability

    Role of the N-Terminal Seven Residues of Surfactant Protein B (SP-B)

    Get PDF
    Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B) is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the “insertion sequence”. These studies employed a construct of SP-B, SP-B (1–25,63–78), also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state 2H NMR were used to study the structure of SP-B (1–25,63–78) and its interactions with phospholipid bilayers. Comparison of results for SP-B (8–25,63–78) and SP-B (1–25,63–78) demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics

    The effects of retinoic acid on the Insulin-like growth factor axis in primary tissue culture from hyperparathyroidism

    No full text
    Background The importance of the IGF system in HPT has been previously demonstrated. Additionally, the role of vitamin A in HPT has been reported. Retinoic acid (RA), a derivative of vitamin A, is a ligand for the IGF II receptor (IGF2R). We have evaluated the interactions of RA with the IGF system in a primary parathyroid cell culture model. Materials and Methods Primary cell cultures were prepared from nine patients. Following adhesion, the cells were transferred to serum-free medium and dosed once with growth factors ± RA for 96 hours. Proliferation was assessed by measuring tritiated thymidine incorporation. Results Compared with the control group (100%), both IGF I and II increased DNA synthesis significantly. Retinoic acid significantly reduced the basal DNA synthesis to 82.2% ± 4.2% compared with control (P 0.05). To evaluate the role of IGF2R or IGFBPs in mediating the actions of RA, the IGF II analogs [Leu27]IGF II (10–20-fold reduced IGF I receptor affinity) and des(1–6) IGF II (lower IGFBP binding affinity) were used. The IGF II inhibitory effect of RA was enhanced in the presence of analogs [Leu27]IGF II (P = 0.052) but not with des(1–6)IGF II (P > 0.05), compared with wild-type IGF II. Conclusions These data implicate a novel antiproliferative role for RA in enhancing the pericellular clearance of IGF II via the IGF2R preventing ligand activation of the IGF I receptor. This may have broader implications for RA effects in other tumors
    corecore