803 research outputs found

    UiS Subsea-Freight Glider: A large buoyancy-driven autonomous cargo glider

    Get PDF
    This study presents the baseline design for the autonomous subsea vehicle capable of traveling at a lower speed of 1 m/s with an operating range of 400 km. Owing to UiS subsea-freight glider’s (USFG) exceedingly economical and unique propulsion system, it can transport various types of cargo over variable distances. The primary use-case scenario for the USFG is to serve as an autonomous transport vessel to carry CO2 from land-based facilities to subsea injection sites. This allows the USFG to serve as a substitute for weather-dependent cargo tankers and underwater pipelines. The length of the USFG is 50.25 m along with a beam of 5.50 m, which allows the vessel to carry 518 m3 of CO2 while serving the storage needs of the carbon capture and storage (CCS) ventures on the Norwegian continental shelf. The USFG is powered by battery cells, and it only consumes a little less than 8 kW of electrical power. Along with the mechanical design of the USFG, the control design is also presented in the final part of the paper. The maneuvering model of the USFG is presented along with two operational case studies. For this purpose, a linear quadratic regulator (LQR)- and proportional-integral-derivative (PID)-based control system is designed, and a detailed comparison study is also shown in terms of tuning and response characteristics for both controllers.acceptedVersio

    A Cone Beam CT-Based Study For Clinical Target Definition Using Pelvic Anatomy During Post-Prostatectomy Radiotherapy

    Get PDF
    Introduction: Radiation therapy (RT) is delivered after radical prostatectomy (RP) either as salvage treatment for an elevated prostate-specific antigen (PSA) level1-6 or as adjuvant therapy for patients with highrisk pathologic features7-8. Recent prospective data demonstrated a disease-free survival benefit of adjuvant RT for pathologic T3N0 prostate cancer9-10. Despite literature supporting the delivery of post-RP RT to the prostatic fossa (PF), no clear target definition guidelines exist for intensity modulated radiation therapy (IMRT) or image-guided RT (IGRT)11. Visualization of the PF is limited on standard CT images, with significant interobserver variability and uncertainty in CTV definition12. Efforts to incorporate complementary imaging modalities such as MRI for PF target volume definition have generated neither demonstrably more reliable PF delineation, nor practical contouring guidelines13. Regardless of the imaging modality, direct visualization and delineation of the PF clinical target volume (CTV) is fraught with uncertainty. On the other hand, it is possible to distinguish the borders of important nearby pelvic structures, namely the bladder and the rectum. The reliability of rectal volume definition on helical CT is supported by analysis of rectal contours defined in a prospective trial, suggesting the feasibility of rectal dose-volume data collection in a multicenter setting14. Fiorino et al have described a correlation between PF CTV shift and anterior rectal wall shift for the cranial half of the rectum in their report of rectal and bladder movement during post-RP RT using weekly CT images15. These studies support the reliability of CT-defined rectum contours and a limited correlation between PF CTV and anterior rectal wall, an important tenet in the current study. Int. J. Radiation Oncol. Biol. Physics, Volume 70, Issue 2, pages 431-436, Feb. 1, 2008

    Social mining for sustainable cities: thematic study of gender-based violence coverage in news articles and domestic violence in relation to COVID-19

    Get PDF
    We argue that social computing and its diverse applications can contribute to the attainment of sustainable development goals (SDGs)—specifically to the SDGs concerning gender equality and empowerment of all women and girls, and to make cities and human settlements inclusive. To achieve the above goals for the sustainable growth of societies, it is crucial to study gender-based violence (GBV) in a smart city context, which is a common component of violence across socio-economic groups globally. This paper analyzes the nature of news articles reported in English newspapers of Pakistan, India, and the UK—accumulating 12,693 gender-based violence-related news articles. For the qualitative textual analysis, we employ Latent Dirichlet allocation for topic modeling and propose a Doc2Vec based word-embeddings model to classify gender-based violence-related content, called GBV2Vec. Further, by leveraging GBV2Vec, we also build an online tool that analyzes the sensitivity of Gender-based violence-related content from the textual data. We run a case study on GBV concerning COVID-19 by feeding the data collected through Google News API. Finally, we show different news reporting trends and the nature of the gender-based violence committed during the testing times of COVID-19. The approach and the toolkit that this paper proposes will be of great value to decision-makers and human rights activists, given the prompt and coordinated performance against gender-based violence in smart city context—and can contribute to the achievement of SDGs for sustainable growth of human societies

    2-(4-Isopropyl­benzylidene)propanoic acid

    Get PDF
    The two mol­ecules in the asymmetric unit of the title compound, C13H16O2, form dimers through O—H⋯O hydrogen bonding, resulting in R 2 2(8) rings. Each carboxyl­ O atom is involved in inter­amolecular C—H⋯O hydrogen bonds, forming five-membered rings. There exist dissimilar dihedral angles within the two mol­ecules, for example the carboxylate and isopropyl groups make dihedral angles of 59.6 (4) and 71.7 (3)° in the two molecules. There are no intermolecular π inter­actions

    Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential

    Get PDF
    Berries are grown worldwide with the most consumed berries being blackberries (Rubus spp.), blueberries (Vaccinium corymbosum), red raspberries (Rubus idaeus) and strawberries (Fragaria spp.). Berries are either consumed fresh, frozen, or processed into wines, juices, and jams. In recent times, researchers have focused their attention on berries due to their abundance in phenolic compounds. The current study aimed to evaluate the phenolic content and their antioxidant potential followed by characterization and quantification using LC-ESI-QTOF-MS/MS and HPLC-PDA. Blueberries were highest in TPC (2.93 ± 0.07 mg GAE/gf.w.) and TFC (70.31 ± 1.21 µg QE/gf.w.), whereas the blackberries had the highest content in TTC (11.32 ± 0.13 mg CE/gf.w.). Blueberries had the highest radical scavenging capacities for the DPPH (1.69 ± 0.09 mg AAE/gf.w.), FRAP (367.43 ± 3.09 µg AAE/gf.w.), TAC (1.47 ± 0.20 mg AAE/gf.w.) and ABTS was highest in strawberries (3.67 ± 0.14 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS study identified a total of 65 compounds including 42 compounds in strawberries, 30 compounds in raspberries, 28 compounds in blueberries and 21 compounds in blackberries. The HPLC-PDA quantification observed phenolic acid (p-hydroxybenzoic) and flavonoid (quercetin-3-rhamnoside) higher in blueberries compared to other berries. Our study showed the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical and nutraceutical industries

    Field traffic-induced soil compaction under moderate machine-field conditions affects soil properties and maize yield on sandy loam soil

    Get PDF
    Soil compaction due to field trafficking involves a complex interplay of machine-soil properties. In contrast to previous studies simulating worst field scenarios, this two-year field experiment investigated the effects of traffic-induced compaction involving moderate machine operational specifications (axle load, 3.16 Mg; mean ground contact pressure, 77.5 kPa) and lower field moisture contents (< field capacity) at the time of trafficking on soil physical properties, spatial root distribution, and corresponding maize growth and grain yield in sandy loam soil. Two compaction levels, i.e. two (C2) and six (C6) vehicle passes, were compared with a control (C0). Two maize (Zea mays L.) cultivars, i.e. ZD-958 and XY-335, were used. Results showed topsoil (< 30 cm) compaction with increases in bulk density (BD) and penetration resistance (PR) up to 16.42% and 127.76%, respectively, in the 10-20 cm soil layer in 2017. Field trafficking resulted in a shallower and stronger hardpan. An increased number of traffic passes (C6) aggravated the effects, and the carryover effect was found. Higher BD and PR impaired root proliferation in deeper layers of topsoil (10-30 cm) and promoted shallow horizontal root distribution. However, XY-335, compared with ZD-958, showed deeper root distribution under compaction. Compaction-induced reductions in root biomass and length densities were respectively up to 41% and 36% in 10-20 cm and 58% and 42% in the 20-30 cm soil layer. Consequent yield penalties (7.6%-15.5%) underscore the detriments of compaction, even only in topsoil. In crux, despite their low magnitude, the negative impacts of field trafficking under moderate machine-field conditions after just two years of annual trafficking foreground the challenge of soil compaction

    5-Hydr­oxy-2-methyl-4H-pyran-4-one

    Get PDF
    The title compound, C6H6O3, is a member of the pyrone family. The mol­ecules are planar (r.m.s. deviation of the asymmetric unit is 0.0248 Å, whereas that of the dimer is 0.0360 Å) and they are dimerized due to inter­molecular O—H⋯O hydrogen bonds. The dimers are connected to each other through hydrogen bonds involving the CH3 group and the hydr­oxy O atom. There are π–π inter­actions between the centroids of the pyrone rings at a distance of 3.8552 (13) Å. A C—H⋯π inter­action also exists between the carbonyl group and the centroid CgA of the pyrone ring, with O⋯CgA = 3.65 (1) Å and C⋯CgA = 4.363 (2) Å

    Methyl 2-(N-methoxy­carbonyl­meth­yl-N-methylsulfamo­yl)benzoate

    Get PDF
    In the title compound, C12H15NO6S, the aromatic ring is oriented at dihedral angles of 64.76 (11) and 56.42 (13)° with respect to the planar methyl ester unit and the SO2 group, respectively. The dihedral angle between the SO2 group and the planar methoxy­carbonyl­methyl group is 50.42 (14)°. Intra­molecular C—H⋯O hydrogen bonding results in the formation of an eight-membered ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules

    An Adaptive Distributed Averaging Integral Control Scheme for Micro-Grids with Renewable Intermittency and Varying Operating Cost

    Get PDF
    The increasing penetration of intermittent renewable energy resources in micro-grids poses several issues, such as stochastic power generation, demand and supply miss-match, frequency fluctuation, and economic dispatch problems. To address such critical issues, a distributed secondary control scheme based for micro-grids with varying operating cost and intermittent renewable energy resources is proposed for frequency regulation and economic load dispatch. The paper presents an adaptive distributed averaging integral control scheme with conditional uncertainties, namely varying operating costs, and renewable intermittency. The proposed control scheme adapts to the uncertainties by updating the control law parameters dynamically and can maintain overall network stability. The distributed control scheme employs communication channels for exchange of generation data from the neighboring power units for optimal power sharing and consensus among the power units. An additional controller at tertiary control layer of the hierarchical control architecture is also augmented in the control structure to economically dispatch the load and the consensus-based algorithm guarantees optimal load sharing. The proposed communication based control scheme reveals the best combination of performance and flexibility. A performance-based comparative analysis is also presented, validating the effectiveness of the proposed control scheme compared to the prior works. The robustness and performance of the proposed control scheme is illustrated through computer simulations

    Response of cauliflower (Brassica oleracea L.) to nitric oxide application under cadmium stress

    Get PDF
    Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland’s solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.The authors highly acknowledge the Government College University, Faisalabad, Pakistan for their financial support to complete this project. This work was supported by the National Natural Science Foundation of China (No. 51974313) and the Key Project of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization (2020ZDZZ03). This work was supported by the Qatar University vegetable factory project QUEX-CASMJF-VF-18-19. Open Access funding provided by the Qatar National Library
    corecore