3,477 research outputs found
Collaboratively setting the priorities for health and social care research for older lesbian, gay, bisexual and trans* people
This paper reports on a novel approach to setting research priorities relevant to the needs of older LGBT people. Research is growing in this area and has recognised the negative impact of contemporary and historical discrimination towards non-normative genders and sexualities. The results of a symposium, survey and agreement analysis are presented to identify the levels of priority placed on sixty different research topics. Discussion focuses on the novelty and/or similarity to existing research patterns on LGBT ageing, as well as prioritising topics such as: how to include unheard voices; exploring trans* people’s experiences and preferences around long-term hormone use; and, embedding research findings into policy and practice
New insight on early oxidation stages of austenitic stainless steel from in situ XPS analysis on single-crystalline Fe–18Cr–13Ni
International audienceIn situ X-ray photoelectron spectroscopy real-time measurements and angular-dependent high resolution core level analysis were used for the first time to investigate the Cr enrichment and oxide growth mechanisms on a model 304 austenitic stainless steel surface in the very initial stages of oxidation leading to pre-passivation. The oxidation kinetics was followed for increasing oxygen exposure and temperature, revealing an early nucleation regime (for exposure < 10 L) leading to the formation of a strongly Cr-enriched Cr 3+ /Fe 3+ mixed layer followed by an oxide growth regime where preferential iron oxidation takes over and mitigate the initial chromium enrichment
Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association
The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo
Severe community-acquired Enterobacter pneumonia: a plea for greater awareness of the concept of health-care-associated pneumonia
<p>Abstract</p> <p>Background</p> <p>Patients with <it>Enterobacter </it>community-acquired pneumonia (EnCAP) were admitted to our intensive care unit (ICU). Our primary aim was to describe them as few data are available on EnCAP. A comparison with CAP due to common and typical bacteria was performed.</p> <p>Methods</p> <p>Baseline clinical, biological and radiographic characteristics, criteria for health-care-associated pneumonia (HCAP) were compared between each case of EnCAP and thirty age-matched typical CAP cases. A univariate and multivariate logistic regression analysis was performed to determine factors independently associated with ENCAP. Their outcome was also compared.</p> <p>Results</p> <p>In comparison with CAP due to common bacteria, a lower leukocytosis and constant HCAP criteria were associated with EnCAP. Empiric antibiotic therapy was less effective in EnCAP (20%) than in typical CAP (97%) (p < 0.01). A delay in the initiation of appropriate antibiotic therapy (3.3 ± 1.6 vs. 1.2 ± 0.6 days; p < 0.01) and an increase in duration of mechanical ventilation (8.4 ± 5.2 vs. 4.0 ± 4.3 days; p = 0.01) and ICU stay were observed in EnCAP patients.</p> <p>Conclusions</p> <p>EnCAP is a severe infection which is more consistent with HCAP than with typical CAP. This retrospectively suggests that the application of HCAP guidelines should have improved EnCAP management.</p
Shedding Light on the Chemical Diversity of Ectopic Calcifications in Kidney Tissues: Diagnostic and Research Aspects
In most industrialized countries, different epidemiologic studies show that chronic renal failure is dramatically increasing. Such major public health problem is a consequence of acquired systemic diseases such as type II diabetes, which is now the first cause for end stage renal failure. Furthermore, lithogenic diseases may also induce intratubular crystallization, which may finally result in end-stage renal failure (ESRF). Up to now, such rare diseases are often misdiagnosed. In this study, based on twenty four biopsies, we show that SR µFTIR (Synchrotron Radiation-µFourier transform infrared) spectroscopy constitutes a significant opportunity to characterize such pathological µcalcifications giving not only their chemical composition but also their spatial distribution in the tissues. This experimental approach offers new opportunities to the clinicians to describe at the cell level the physico-chemical processes leading to the formation of the pathological calcifications which lead to ESRF
Magnetic effects at the interface between nonmagnetic oxides
The electronic reconstruction at the interface between two insulating oxides
can give rise to a highly-conductive interface. In analogy to this remarkable
interface-induced conductivity we show how, additionally, magnetism can be
induced at the interface between the otherwise nonmagnetic insulating
perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the
interface is found, together with a logarithmic temperature dependence of the
sheet resistance. At low temperatures, the sheet resistance reveals magnetic
hysteresis. Magnetic ordering is a key issue in solid-state science and its
underlying mechanisms are still the subject of intense research. In particular,
the interplay between localized magnetic moments and the spin of itinerant
conduction electrons in a solid gives rise to intriguing many-body effects such
as Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, the Kondo effect, and
carrier-induced ferromagnetism in diluted magnetic semiconductors. The
conducting oxide interface now provides a versatile system to induce and
manipulate magnetic moments in otherwise nonmagnetic materials.Comment: Nature Materials, July issu
Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies
We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD
Adolescent brain maturation and cortical folding: evidence for reductions in gyrification
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development
- …