113 research outputs found

    Protein–protein HADDocking using exclusively pseudocontact shifts

    Get PDF
    In order to enhance the structure determination process of macromolecular assemblies by NMR, we have implemented long-range pseudocontact shift (PCS) restraints into the data-driven protein docking package HADDOCK. We demonstrate the efficiency of the method on a synthetic, yet realistic case based on the lanthanide-labeled N-terminal ε domain of the E. coli DNA polymerase III (ε186) in complex with the HOT domain. Docking from the bound form of the two partners is swiftly executed (interface RMSDs < 1 Å) even with addition of very large amount of noise, while the conformational changes of the free form still present some challenges (interface RMSDs in a 3.1–3.9 Å range for the ten lowest energy complexes). Finally, using exclusively PCS as experimental information, we determine the structure of ε186 in complex with the HOT-homologue θ subunit of the E. coli DNA polymerase III

    The Formation and Stabilization of a Novel G-Quadruplex in the 5′-Flanking Region of the Relaxin Gene

    Get PDF
    It has been reported that binding of STAT3 protein to the 5′-flanking region of the relaxin gene may result in downregulation of the relaxin expression. There is a Guanine(G)-rich segment located in about 3.8 Kb upstream of the relaxin gene and very close to the STAT3's binding site. In our study, NMR spectroscopy revealed the formation of G-quadruplex by this G-rich strand, and the result was confirmed by ESI mass spectrometry and CD spectroscopy. The theoretical structure of RLX G-quadruplex was constructed and refined by molecular modeling. When this relaxin G-quadruplex was stabilized by berberine(ΔTm = 10°C), a natural alkaloid from a Chinese herb, the gene expression could be up-regulated in a dose-dependent manner which was proved by luciferase assay. This result is different from the general G-quadruplex function that inhibiting the telomere replication or down-regulating many oncogenes expression. Therefore, our study reported a novel G-quadruplex in the relaxin gene and complemented the regulation mechanism about gene expression by G-quadruplexes

    Rare Copy Number Variants Observed in Hereditary Breast Cancer Cases Disrupt Genes in Estrogen Signaling and TP53 Tumor Suppression Network

    Get PDF
    Breast cancer is the most common cancer in women in developed countries, and the contribution of genetic susceptibility to breast cancer development has been well-recognized. However, a great proportion of these hereditary predisposing factors still remain unidentified. To examine the contribution of rare copy number variants (CNVs) in breast cancer predisposition, high-resolution genome-wide scans were performed on genomic DNA of 103 BRCA1, BRCA2, and PALB2 mutation negative familial breast cancer cases and 128 geographically matched healthy female controls; for replication an independent cohort of 75 similarly mutation negative young breast cancer patients was used. All observed rare variants were confirmed by independent methods. The studied breast cancer cases showed a consistent increase in the frequency of rare CNVs when compared to controls. Furthermore, the biological networks of the disrupted genes differed between the two groups. In familial cases the observed mutations disrupted genes, which were significantly overrepresented in cellular functions related to maintenance of genomic integrity, including DNA double-strand break repair (P = 0.0211). Biological network analysis in the two independent breast cancer cohorts showed that the disrupted genes were closely related to estrogen signaling and TP53 centered tumor suppressor network. These results suggest that rare CNVs represent an alternative source of genetic variation influencing hereditary risk for breast cancer

    Fungal Virulence and Development Is Regulated by Alternative Pre-mRNA 3′End Processing in Magnaporthe oryzae

    Get PDF
    RNA-binding proteins play a central role in post-transcriptional mechanisms that control gene expression. Identification of novel RNA-binding proteins in fungi is essential to unravel post-transcriptional networks and cellular processes that confer identity to the fungal kingdom. Here, we carried out the functional characterisation of the filamentous fungus-specific RNA-binding protein RBP35 required for full virulence and development in the rice blast fungus. RBP35 contains an N-terminal RNA recognition motif (RRM) and six Arg-Gly-Gly tripeptide repeats. Immunoblots identified two RBP35 protein isoforms that show a steady-state nuclear localisation and bind RNA in vitro. RBP35 coimmunoprecipitates in vivo with Cleavage Factor I (CFI) 25 kDa, a highly conserved protein involved in polyA site recognition and cleavage of pre-mRNAs. Several targets of RBP35 have been identified using transcriptomics including 14-3-3 pre-mRNA, an important integrator of environmental signals. In Magnaporthe oryzae, RBP35 is not essential for viability but regulates the length of 3′UTRs of transcripts with developmental and virulence-associated functions. The Δrbp35 mutant is affected in the TOR (target of rapamycin) signaling pathway showing significant changes in nitrogen metabolism and protein secretion. The lack of clear RBP35 orthologues in yeast, plants and animals indicates that RBP35 is a novel auxiliary protein of the polyadenylation machinery of filamentous fungi. Our data demonstrate that RBP35 is the fungal equivalent of metazoan CFI 68 kDa and suggest the existence of 3′end processing mechanisms exclusive to the fungal kingdom

    The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    Get PDF
    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
    corecore