7,140 research outputs found
Recommended from our members
Complete Experimental Structure Determination of the p(3x2)pg Phase of Glycine on Cu{110}
We present a quantitative low energy electron diffraction (LEED) surface-crystallograpic
study of the complete adsorption geometry of glycine adsorbed on Cu{110} in the ordered
p(3×2) phase. The glycine molecules form bonds to the surface through the N atoms of the
amino group and the two O atoms of the de-protonated carboxylate group, each with separate
Cu atoms such that every Cu atom in the first layer is involved in a bond. Laterally, N atoms are
nearest to the atop site (displacement 0.41 Å). The O atoms are asymmetrically displaced from
the atop site by 0.54 Å and 1.18 Å with two very different O-Cu bond lengths of 1.93 Å and
2.18 Å. The atom positions of the upper-most Cu layers show small relaxations within 0.07 Å
of the bulk-truncated surface geometry. The unit cell of the adsorbate layer consists of two
glycine molecules, which are related by a glide-line symmetry operation. This study clearly
shows that a significant coverage of adsorbate structures without this glide-line symmetry must
be rejected, both on the grounds of the energy dependence of the spot intensities (LEED-IV
curves) and of systematic absences in the LEED pattern
Statistics of an Unstable Barotropic Jet from a Cumulant Expansion
Low-order equal-time statistics of a barotropic flow on a rotating sphere are
investigated. The flow is driven by linear relaxation toward an unstable zonal
jet. For relatively short relaxation times, the flow is dominated by
critical-layer waves. For sufficiently long relaxation times, the flow is
turbulent. Statistics obtained from a second-order cumulant expansion are
compared to those accumulated in direct numerical simulations, revealing the
strengths and limitations of the expansion for different relaxation times.Comment: 23 pages, 8 figures. Version to appear in J. Atmos. Sc
Land surface phenological response to decadal climate variability across Australia using satellite remote sensing
© 2014 Author(s). Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative spatial information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven Northern Hemisphere systems, where phenology shows annually recurring patterns. However, precipitation-driven non-annual phenology of arid and semi-arid systems (i.e., drylands) received much less attention, despite the fact that they cover more than 30% of the global land surface. Here, we focused on Australia, a continent with one of the most variable rainfall climates in the world and vast areas of dryland systems, where a detailed phenological investigation and a characterization of the relationship between phenology and climate variability are missing. To fill this knowledge gap, we developed an algorithm to characterize phenological cycles, and analyzed geographic and climate-driven variability in phenology from 2000 to 2013, which included extreme drought and wet years. We linked derived phenological metrics to rainfall and the Southern Oscillation Index (SOI). We conducted a continent-wide investigation and a more detailed investigation over the Murray-Darling Basin (MDB), the primary agricultural area and largest river catchment of Australia. Results showed high inter-and intra-annual variability in phenological cycles across Australia. The peak of phenological cycles occurred not only during the austral summer, but also at any time of the year, and their timing varied by more than a month in the interior of the continent. The magnitude of the phenological cycle peak and the integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over northeastern Australia and within the MDB, predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of vegetation productivity) showed positive anomalies of more than 2 standard deviations over most of eastern Australia in 2009-2010, which coincided with the transition from the El Niño-induced decadal droughts to flooding caused by La Niña
Globalization, the ambivalence of European integration and the possibilities for a post-disciplinary EU studies
Using the work of Manuel Castells as a starting point, this article explores the ambivalent relationship between globalization and European integration and the variety of ways in which the mainstream political science of the EU has attempted to deal with this issue. The analysis here suggests that various 'mainstreaming' disciplinary norms induce types of work that fail to address fully the somewhat paradoxical and counter-intuitive range of possible relationships between globalization and European integration. The article explores critically four possible analytical ways out of this paradox—abandonment of the concept of globalization, the development of definition precision in globalization studies, the reorientation of work to focus on globalization as discourse, and inter- and post-disciplinarity. The argument suggests that orthodox discussions of the relationship require a notion of social geography that sits at odds with much of the literature on globalization and while greater dialogue between disciplines is to be welcomed, a series of profound epistemological questions need to be confronted if studies of the interplay between global and social process are to be liberated from their disciplinary chains
Energy spectra of quantum rings
Ring geometries have fascinated experimental and theoretical physicists over
many years. Open rings connected to leads allow the observation of the
Aharonov-Bohm effect, a paradigm of quantum mechanical phase coherence. The
phase coherence of transport through a quantum dot embedded in one arm of an
open ring has been demonstrated. The energy spectrum of closed rings has only
recently been analysed by optical experiments and is the basis for the
prediction of persistent currents and related experiments. Here we report
magnetotransport experiments on a ring-shaped semiconductor quantum dot in the
Coulomb blockade regime. The measurements allow us to extract the discrete
energy levels of a realistic ring, which are found to agree well with
theoretical expectations. Such an agreement, so far only found for few-electron
quantum dots, is here extended to a many-electron system. In a semiclassical
language our results indicate that electron motion is governed by regular
rather than chaotic motion, an unexplored regime in many-electron quantum dots.Comment: 10 pages, 4 figure
Information-theoretic active contour model for microscopy image segmentation using texture
High throughput technologies have increased the need for automated image analysis in a wide variety of microscopy techniques. Geometric active contour models provide a solution to automated image segmentation by incorporating statistical information in the detection of object boundaries. A statistical active contour may be defined by taking into account the optimisation of an information-theoretic measure between object and background. We focus on a product-type measure of divergence known as Cauchy-Schwartz distance which has numerical advantages over ratio-type measures. By using accurate shape derivation techniques, we define a new geometric active contour model for image segmentation combining Cauchy-Schwartz distance and Gabor energy texture filters. We demonstrate the versatility of this approach on images from the Brodatz dataset and phase-contrast microscopy images of cells
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase
Drug-target residence time (t = 1/koff, where koff is the dissociation
rate constant) has become an important index in discovering betteror
best-in-class drugs. However, little effort has been dedicated to
developing computational methods that can accurately predict this
kinetic parameter or related parameters, koff and activation free
energy of dissociation (ΔG≠
off). In this paper, energy landscape theory
that has been developed to understand protein folding and function
is extended to develop a generally applicable computational framework
that is able to construct a complete ligand-target binding free
energy landscape. This enables both the binding affinity and the
binding kinetics to be accurately estimated.We applied this method
to simulate the binding event of the anti-Alzheimer’s disease drug
(−)−Huperzine A to its target acetylcholinesterase (AChE). The computational
results are in excellent agreement with our concurrent
experimental measurements. All of the predicted values of binding
free energy and activation free energies of association and dissociation
deviate from the experimental data only by less than 1 kcal/
mol. The method also provides atomic resolution information for the
(−)−Huperzine A binding pathway, which may be useful in designing
more potent AChE inhibitors. We expect thismethodology to be
widely applicable to drug discovery and development
Search for the Lepton Flavor Violation Process at BESIII
We search for the lepton-flavor-violating decay of the into an
electron and a muon using events
collected with the BESIII detector at the BEPCII collider. Four candidate
events are found in the signal region, consistent with background expectations.
An upper limit on the branching fraction of (90% C.L.) is obtained
Precision measurement of the decay branching fractions
Using 482 pb of data taken at GeV, we measure the
branching fractions of the decays of into and
to be \BR(D^{*0} \to D^0\pi^0)=(65.5\pm 0.8\pm 0.5)% and \BR(D^{*0} \to
D^0\gamma)=(34.5\pm 0.8\pm 0.5)% respectively, by assuming that the
decays only into these two modes. The ratio of the two branching fractions is
\BR(D^{*0} \to D^0\pi^0)/\BR(D^{*0} \to D^0\gamma) =1.90\pm 0.07\pm 0.05,
which is independent of the assumption made above. The first uncertainties are
statistical and the second ones systematic. The precision is improved by a
factor of three compared to the present world average values
- …
